
Embedded Target
for Infineon C166®

Microcontrollers
For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for Infineon C166 Microcontrollers User’s Guide

© COPYRIGHT 2002–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

C166 is a registered trademark of Infineon Technologies AG.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2002 Online only Version 1.0 (Release 13+)
June 2004 Online only Version 1.1 (Release 14)
October 2004 Online only Version 1.1.1 (Release 14SP1)
March 2005 Online only Version 1.2 (Release 14SP2)
September 2005 Online only Version 1.2.1 (Release 14SP3)
September 2006 Online only Version 1.3 (Release 2006b)

Contents

Getting Started

1
What Is the Embedded Target for Infineon C166

Microcontrollers? . 1-3
Feature Summary . 1-3

Prerequisites . 1-5

Using This Guide . 1-6

Installing the Embedded Target for Infineon C166
Microcontrollers . 1-7

Hardware and Software Requirements 1-8
Host Platform . 1-8
Hardware Requirements . 1-8
Software Requirements . 1-9
Switching Between Hardware Variants 1-10

Setting Up and Verifying Your Installation 1-12
Verifying MiniMon Settings . 1-13

Setting Up Your Target Hardware 1-16
Jumper Settings for the phyCore-167 Development

Board . 1-16

Setting Target Preferences . 1-17

Code Generation Configuration for Nondefault
Processors . 1-19

Supported Blocks and Data Types 1-23

v

Overview of C166 Configuration Parameters 1-25

Tutorial: Simple Example Applications for C166
Microcontrollers

2
Introduction . 2-2

Tutorial: Creating a New Application 2-3
Before You Begin . 2-3
Example Model 1: c166_serial_transmit 2-4
Generating and Downloading Code 2-7
Example 2: c166_serial_io . 2-9

Starting the Debugger on Completion of the Build
Process . 2-12
Fixed-Point Example Model: c166_fuelsys 2-14

Generating ASAP2 Files . 2-17

Integrating Your Own Device Drivers

3
Integrating Hand-Coded Device Drivers with a

Simulink Model . 3-2

Preparing Input and Output Signals to the Device
Driver Functions . 3-3

Calling the Device Driver Functions from
c166_main.c . 3-6

Adding the I/O Driver Source to the List of Files to
Build . 3-8

vi Contents

Tutorial: Using the Example Driver Functions 3-9

Custom Storage Class for C166 Microcontroller
Bit-Addressable Memory

4
Specifying C166 Microcontroller Bit-Addressable

Memory . 4-2

Using the Bitfield Example Model 4-3

Execution Profiling

5
Overview of Execution Profiling . 5-2

The Profiling Command . 5-3
Definitions . 5-4
Execution Profiling Blocks . 5-4

Real-Time Workshop Options for Execution
Profiling . 5-5
Execution Profiling . 5-5
Number of Data Points . 5-6
Task Scheduler Overrun Options . 5-6

Multitasking Demo Model . 5-9
Running the Multitasking Demo . 5-9
Interpreting the MATLAB Graphic 5-11

vii

Blocks — By Category

6
C166 Drivers . 6-2

Top-Level Blocks . 6-2
Asynchronous/Synchronous Serial Interface 6-2
CAN Interface . 6-3
Execution Profiling . 6-3
TwinCAN Interface . 6-3
Interrupts . 6-4
Utilities . 6-4
Digital Input/Output . 6-4

CAN Message Blocks and CAN Drivers 6-5

Blocks — Alphabetical List

7

Index

viii Contents

1

Getting Started

This section contains the following topics:

What Is the Embedded Target for
Infineon C166 Microcontrollers?
(p. 1-3)

Overview of the product and the
use of the Embedded Target for
Infineon C166® Microcontrollers in
the development process.

Prerequisites (p. 1-5) What you need to know before using
the Embedded Target for Infineon
C166 Microcontrollers.

Using This Guide (p. 1-6) Suggested path through this
document to get you up and running
quickly with the Embedded Target
for Infineon C166 Microcontrollers.

Installing the Embedded Target
for Infineon C166 Microcontrollers
(p. 1-7)

Installation of the product.

Hardware and Software
Requirements (p. 1-8)

Hardware platforms supported by
the product; development tools (e.g.,
compilers, debuggers) required for
use with the product.

Setting Up and Verifying Your
Installation (p. 1-12)

Overview of setting up your
development tools and hardware to
work with the Embedded Target for
Infineon C166 Microcontrollers, and
verifying correct operation.

Setting Up Your Target Hardware
(p. 1-16)

Port connections and jumper
settings.

1 Getting Started

Setting Target Preferences (p. 1-17) Configuring environmental settings
and preferences associated with the
Embedded Target for Infineon C166
Microcontrollers.

Code Generation Configuration for
Nondefault Processors (p. 1-19)

This section explains how to set code
generation options for nondefault
hardware variants.

Supported Blocks and Data Types
(p. 1-23)

Requirements and restrictions.

Overview of C166 Configuration
Parameters (p. 1-25)

Links to information about C166
Options in the Configuration
Parameters dialog.

1-2

What Is the Embedded Target for Infineon C166 Microcontrollers?

What Is the Embedded Target for Infineon C166
Microcontrollers?

The Embedded Target for Infineon C166® Microcontrollers is an add-on
product for use with the Link for TASKING® and Real-Time Workshop®

Embedded Coder. It provides a set of tools for developing embedded
applications for the C166 family of processors. This includes derivatives
such as Infineon C167 and XC16x, and ST Microelectronics ST10
(http://www.us.st.com).

Used in conjunction with Simulink®, Stateflow®, and the Link for TASKING,
the Embedded Target for Infineon C166 Microcontrollers lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the C166 microcontroller.

• Use rapid prototyping and Processor-in-the-Loop (PIL) techniques to
evaluate performance and validate results obtained from generated code
running on the target hardware.

• Deploy production code on the target hardware.

Feature Summary

• Automatic generation of the main program including singletasking or
preemptive multitasking scheduler

• Scheduler is configurable to allow temporary overruns

• Automated build procedure including starting debugger or download utility

• Support for integer, floating-point, or fixed-point code

• Driver blocks for serial transmit and receive

• Driver blocks for CAN message transmit and receive

• Task execution time profiling

• Examples to show you how to integrate your own driver code

1-3

http://www.us.st.com

1 Getting Started

• Fully integrated with Tasking toolchain, using the Link for TASKING
project-based process

• Enhanced HTML report generation provides analysis of RAM/ROM usage;
this is in addition to the standard HTML report generation that shows
optimization settings and hyperlinks to generated code files

• Support for CAN Calibration Protocol

1-4

Prerequisites

Prerequisites

Note You should familiarize yourself with the Link for TASKING
documentation, especially “Getting Started”.

This document assumes you are experienced with MATLAB®, Simulink,
Real-Time Workshop, and the Real-Time Workshop Embedded Coder.

Minimally, you should read the following from the “Getting Started with
Real-Time Workshop” section of the Real-Time Workshop documentation:

• “What Is Real-Time Workshop?” This section introduces general concepts
and terminology related to Real Time Workshop.

• “Working with Real-Time Workshop” This section provides several
hands-on exercises that demonstrate the Real-Time Workshop user
interface, code generation and build process, and other essential features.

In addition, if you want to understand and use the device driver blocks in
the Embedded Target for Infineon C166 Microcontrollers library, you should
have at least a basic understanding of the architecture of the C166. The
C166 User’s Manual (or corresponding document for your C166 derivative
processor) is required reading. The MathWorks recommends that you read
the introduction to the C166 microcontroller. You can find this document
by searching the Infineon Web site for the C166 family of microcontrollers,
at the following URL:

http://www.infineon.com/

1-5

http://www.infineon.com/

1 Getting Started

Using This Guide
Follow this path to get acquainted with the Embedded Target for Infineon
C166 Microcontrollers and gain hands-on experience with the features most
relevant to your interests:

• Read in its entirety, paying particular attention to “Setting Up and
Verifying Your Installation” on page 1-12.

• If you are interested in using the device driver blocks supplied with
Embedded Target for Infineon C166 Microcontrollers and in deploying
stand-alone, real-time applications on the C166, read Chapter 2, “Tutorial:
Simple Example Applications for C166 Microcontrollers” Work through the
“Tutorial: Creating a New Application” on page 2-3.

• Then, if you are interested in using Embedded Target for Infineon C166
Microcontrollers for integrating automatically generated code with your
own hand-written device driver code, see “Integrating Hand-Coded Device
Drivers with a Simulink Model” on page 3-2. Work though the example
provided in “Tutorial: Using the Example Driver Functions” on page 3-9.

• See Chapter 4, “Custom Storage Class for C166 Microcontroller
Bit-Addressable Memory” to find out how to use Embedded Target for
Infineon C166 Microcontrollers to take advantage of C166 bit-addressable
memory. This can significantly reduce code size and increase execution
speed. There are examples provided in “Using the Bitfield Example Model”
on page 4-3.

• For in-depth information about the device drivers and other blocks supplied
with Embedded Target for Infineon C166 Microcontrollers, see Chapter 6,
“Blocks — By Category” It is particularly important to read C166 Resource
Configuration, as the C166 Resource Configuration block is required to
use the device driver blocks.

• To browse the demos available, select Start > Simulink > Embedded
Target for Infineon C166 Microcontrollers > Demos.

We recommend you work through the tutorials in this User’s Guide with
step-by-step instructions for using and understanding these demos.

1-6

Installing the Embedded Target for Infineon C166 Microcontrollers

Installing the Embedded Target for Infineon C166
Microcontrollers

Your platform-specific MATLAB Installation Guide provides all of the
information you need to install the Embedded Target for Infineon C166
Microcontrollers.

Prior to installing the Embedded Target for Infineon C166 Microcontrollers,
you must obtain a License File or Personal License Password from The
MathWorks. The License File or Personal License Password identifies the
products you are permitted to install and use.

As the installation process proceeds, it displays a dialog where you can select
which products to install.

1-7

1 Getting Started

Hardware and Software Requirements

Host Platform
The Embedded Target for Infineon C166 Microcontrollers supports only the
PC platform: Windows 2000 and XP only.

You can see the system requirements for MATLAB online at

http://www.mathworks.com/products/system.shtml/Windows

Hardware Requirements
Embedded Target for Infineon C166 Microcontrollers may be used to generate
programs that can run on any development board or Electronic Control Unit
(ECU) that is based on the C166 microcontroller.

The Embedded Target for Infineon C166 Microcontrollers is supplied with
default configurations that have been tested on the following hardware:

• Phytec phyCORE-167 ST10F269

• Phytec phyCORE-167 C167CS

• Phytec kitCON-167 C167CR

• Infineon XC167CI Starter Kit

You can switch easily between these configurations. For other hardware
variants, you will need to change the default configuration settings. For
details see “Switching Between Hardware Variants” on page 1-10.

For other hardware variants you need to create a new Link for TASKING
template project file. If the processor variant selected in the project is not on
the list above then you need to configure the code generation process.

This guide assumes that you are working with the Phytec phyCORE-167CS
development board, and documents specific settings and procedures for
use with the Phytec phyCORE-167CS board, in conjunction with specific
cross-development environments.

1-8

http://www.mathworks.com/products/system.shtml/Windows

Hardware and Software Requirements

If you use a different development board, you may need to adapt these
settings and procedures for your development board.

Software Requirements

Required and Related MathWorks Products
The Embedded Target for Infineon C166 Microcontrollers requires these
products:

• MATLAB

• Simulink

• Real-Time Workshop

• Real-Time Workshop Embedded Coder

• Link for TASKING

Simulink Fixed Point is strongly recommended but not essential, except for
one of the demos: c166_fuelsys.

For more information about any of these products, see either

• The online documentation for that product, if it is installed

• The MathWorks Web site, at
http://www.mathworks.com/products/target_c166/

Supported Cross-Development Tools
In addition to the required MathWorks software, a supported
cross-development environment is required.

• See “Supported TASKING Toolsets” in the Link for TASKING
documentation for the currently supported cross-development tools for use
with the Embedded Target for Infineon C166 Microcontrollers:

Note The demo version of the Tasking Cross-Compiler is not supported.

1-9

http://www.mathworks.com/products/target_c166/

1 Getting Started

• MiniMon freeware download and monitor utility (version 2.2.3)

Before using the Embedded Target for Infineon C166 Microcontrollers with
the above cross-development tools, please be sure to read and follow the
instructions in “Setting Up and Verifying Your Installation” on page 1-12.

Switching Between Hardware Variants
There are many different members of the C166 microcontroller family, e.g.,
C167CS, ST10, XC167CI. For each of these processors, it is appropriate to
use different compiler switches and link libraries. Even if you are working
with a single processor variant, you may need to build for different memory
configurations, for example, depending on whether the application will run
from RAM or flash memory. The compilation settings are captured in the
project file.

The Embedded Target for Infineon C166 Microcontrollers is supplied with
preconfigured projects for targeting the hardware and simulator for the
following processor variants:

• Phytec phyCORE-C167CS

• Infineon XC167CI Starter Kit

• Phytec phyCORE-ST10F269

• Phytec kitCON-C167CR

If your hardware variant is not on this list, then you need to create a new
Link for TASKING template project (see “Tutorial: Creating New Template
Projects”) and set the C166 code generation options (see “Code Generation
Configuration for Nondefault Processors” on page 1-19).

When switching between target configurations, you should review your Link
for TASKING option set and ensure that options are set appropriately for
the new configuration.

Additionally, for each model that you build, you must check, and, if necessary,
change the following settings in the C166 Resource Configuration block:

• System_frequency

1-10

Hardware and Software Requirements

• External_oscillator_frequency

To determine the correct value of these parameters, consult your hardware
documentation.

It is possible to make all the required changes programmatically: a
convenience function c166switchconfig is provided for this purpose. This
function can be run by double-clicking the block Switch Target Processor
Variant inside any of the demo models.

1-11

1 Getting Started

Setting Up and Verifying Your Installation
The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the Embedded Target for Infineon C166
Microcontrollers and verify correct operation. The initial configuration steps
are described in the following sections:

• “Setting Up Your Target Hardware” on page 1-16

• “Setting Target Preferences” on page 1-17

Install the Tasking C Cross-Compiler and CrossView Pro Debugger by
following the instructions provided by Altium Limited.

If the CrossView connection to your target hardware requires a serial
connection, install the MiniMon download utility. By using MiniMon instead
of CrossView to launch your application, the serial connection will be available
for other purposes, if required. If your CrossView connection is via a debug
interface (for example, on XC16x hardware) then it is not necessary to install
MiniMon.

At the time of writing, you can obtain the MiniMon download utility for
monitoring the serial interface from the Infineon Web site at this URL:

http://www.infineon.com/

To download the MiniMon utility:

1 Go to the Infineon Web site, and click the sitemap.

2 Select Product Categories > Microcontrollers > Development Tools and
Software -> C166/XC166 Development Tools and Software > Software
Downloads.

Find MiniMon in the table, and download and install Minimon_V2228b.exe.

Minimon may need to be configured for your target processor.

1-12

http://www.infineon.com

Setting Up and Verifying Your Installation

After you install, you must specify the location of MiniMon in the
BootstrapLoaderExe target preference, as detailed in “Setting Target
Preferences” on page 1-17. Check that MiniMon is correctly configured for
your target, as detailed in the next section.

Verifying MiniMon Settings
You must check that MiniMon has the correct target settings. Start

MiniMon, then click Configure Hardware () in the toolbar (or select
Target > Configuration) and make sure the settings are as in the following
illustrations.

In general, you should choose configuration settings that are consistent with
the values specified in the Tasking EDE project.

Select Settings > Interface and ensure that the settings for the serial
interface match those in the Resource Configuration block of your model.

To set up a configuration for a C167CR:

1 Select C167CR from the Controller type drop-down list.

2 Click Yes three times when prompted by the dialog boxes asking the
following questions:

a Do you want to load default memory units for this Type?

b Do you want to activate the default kernel for this Type?

c Do you want to load default initialization registers of this Type?

3 Perform the following steps on the Initialize register settings:

a Set SYSCON to 0085.

b Set BUSCON1 to 049F.

c Set ADDRSEL1 to 0006.

d Clear all the other check boxes.

The register settings should look as shown.
This configuration has been verified with a Phytec kc167 (C167CR).

1-13

1 Getting Started

To set up a configuration for a C167CS:

1 Select C167CS-4RM from the Controller type drop-down list.

2 Click Yes three times when prompted by the dialog boxes asking the
following questions:

a Do you want to load default memory units for this Type?

b Do you want to activate the default kernel for this Type?

c Do you want to load default initialization registers of this Type?

3 Perform the following steps on the Initialize register settings:

a Change SYSCON to XPERCON, and set the value to 0403.

1-14

Setting Up and Verifying Your Installation

b Change SYSCON1 to SYSCON, and set the value to 0085.

The order is important: XPERCON must be above SYSCON.

c Set BUSCON1 to 049F.

d Set ADDRSEL1 to 0006.

e Clear all the other check boxes.

The register settings should look as shown.

This second configuration has been verified with phyCORE-C167CS and
on phyCORE-ST10F269 hardware.

1-15

1 Getting Started

Setting Up Your Target Hardware
This guide assumes that you are working with the phyCORE-167CS module
with HD200 development board. This section describes the required
connections and jumper settings for the board. If you are using different
target hardware, you should consult the hardware documentation.

After setting up your board, you must configure target settings associated
with the Embedded Target for Infineon C166 Microcontrollers, as described in
the next section.

Connect the supplied power cable to the board, and use the serial cable to
connect the serial port P1 on the board to the serial port of your PC.

Jumper Settings for the phyCore-167 Development
Board

1 Configure jumpers as detailed in the instructions found in the phyCORE
QuickStart documentation. Note that these settings can be markedly
different from the configuration fresh out of the box.

2 If you are running applications from RAM only, it is useful if the board
starts up in bootloader rather than execution mode. There is one jumper
setting that needs to be changed to achieve this: close pins 1 and 2 on JP10.
This is optional; if you do not close this jumper, then when you download
to the target, you need to keep the Boot switch depressed while pressing
the Reset button.

1-16

Setting Target Preferences

Setting Target Preferences
This section describes configuration settings associated with the Embedded
Target for Infineon C166 Microcontrollers. These settings, which persist across
MATLAB sessions and different models, are referred to as target preferences.
Target preferences let you specify the location of your cross-compiler and
other parameters affecting the generation, building, and downloading of code.

1 First you must set up your Link for TASKING target preferences to specify
the location of your cross-compiler and other settings. See “Setting Target
Preferences” in the Link for TASKING documentation.

2 Start the Embedded Target for Infineon C166 Microcontrollers Target
Preferences Setup GUI by selecting Start > Simulink > Embedded
Target for Infineon C166 Microcontrollers > C166 Target
Preferences .

1-17

1 Getting Started

3 Edit the settings for your cross-development environment:

• BootstrapLoaderExe specifies the path to your download utility
(MiniMon).

You must check this path and also verify that the Link for TASKING target
preferences are correct for your machine. You may need to localize these paths
to suit your PC. You can edit a path by clicking on it. The drive designated in
the path must be either an actual hard drive on your PC, or a mapped drive.
Do not use a Universal Naming Convention (UNC).

1-18

Code Generation Configuration for Nondefault Processors

Code Generation Configuration for Nondefault Processors
If you wish to target nondefault processor types, then you need to set some
code generation options in the TLC Options of your model’s configuration
parameters.

If you are using a template that specifies a nondefault processor type, when
you try to build the model, you see a build error message similar to the one in
the following figure.

When you open the Configuration Parameters dialog, the parameters you
need to set now appear in the TLC Options field. You must replace the
string <ENTER VALUE> for each of the parameters cpuType, twinCAN, and
targetHeaderFile. The following example shows these parameters before
the strings <ENTER VALUE> are replaced.

1-19

1 Getting Started

An example configured for an XC164CM is shown in the following figure.

1-20

Code Generation Configuration for Nondefault Processors

Summary of Parameters

The TLC Options edit box includes the following parameters:

cpuType

• 0x167, for C16x and ST10 type processors

• 0x1662, for XC16x type processors

twinCAN

• 0 – disabled, for use with processors without TwinCAN support

• 1 – enabled, for use with processors with TwinCAN support

1-21

1 Getting Started

targetHeaderFile — The file name of the header file for your processor type.
These are found in TASKING ROOT\include directory.

Typical Parameter Configuration

The following table shows a configuration matrix for the parameters cpuType,
twinCAN and the typical configurations used for the processor variants
supported by the Embedded Target.

Processor Type CPU type TwinCAN

16x, ST 0x167 0 - disabled

XC 0x1662 1 – enabled

Note Driver blocks may not work on unsupported processors.

1-22

Supported Blocks and Data Types

Supported Blocks and Data Types
Embedded Target for Infineon C166 Microcontrollers supports the same
blocks and data types as Real-Time Workshop Embedded Coder.

Note however

• You should not use IEEE values Inf or NaN in your model: these are not
supported and result in an error.

• Floating point support is implemented in the software; if speed and ROM
usage are of concern, you should select the option for integer code and avoid
the use of floating-point values in your model. This is detailed in step 9 of
“Tutorial: Using the Example Driver Functions” on page 3-9.

The Embedded Target for Infineon C166 Microcontrollers provides one block
library, containing seven sublibraries that support different functions, as
follows:

• C166 Drivers Library

- Asynchronous/Synchronous Serial Interface Sublibrary

- CAN Interface Sublibrary

- Execution Profiling Sublibrary

- TwinCAN Interface Sublibrary

- Interrupts Sublibrary

- Utilities Sublibrary

- Digital Input/Output Sublibrary

See Chapter 6, “Blocks — By Category” for details of each block. You can
click Help on the Block Parameters dialog box for the block or access the
block reference page through Help.

The top-level C166 Drivers library contains the C166 Resource Configuration
block. This block supports driver configuration for C166 microcontrollers and
is required if there are device driver blocks in the model. See C166 Resource
Configuration.

1-23

1 Getting Started

The C166 Resource Configuration block provides information required for
generating timer interrupt code. If you do not include a C166 Resource
Configuration block in your model, the code simply executes as fast as
possible. That is, it is not synchronized to real time. This behavior may be
desirable if you are running code on the debugger or hardware simulator.

Caution When using device driver blocks from the Embedded Target
for Infineon C166 Microcontrollers libraries with the C166 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the C166 Resource Configuration block
operates incorrectly. See the C166 Resource Configuration reference page for
further information.

Configuration Class Blocks

Each sublibrary of the Embedded Target for Infineon C166 Microcontrollers
library contains a configuration class block that has an icon similar to the one
shown in this picture.

Caution Configuration class blocks exist only to provide information to
other blocks. Do not copy these objects into a model. If you do you see an error
dialog box to warn you. This causes build failures.

1-24

Overview of C166 Configuration Parameters

Overview of C166 Configuration Parameters
In the C166 Options (under Real-Time Workshop in the Configuration
Parameters dialog) some C166-specific options are available:

Include input/output driver function hooks
Use this option to integrate your own device driver code. This is
described in “Calling the Device Driver Functions from c166_main.c”
on page 3-6.

Maximum number of concurrent base-rate overruns
Option for task execution profiling. See “Overview of Execution
Profiling” on page 5-2.

Maximum number of concurrent sub-rate overruns
Option for task execution profiling. See “Overview of Execution
Profiling” on page 5-2.

Execution profiling
Option for task execution profiling. See “Overview of Execution
Profiling” on page 5-2.

Number of data points
Option for task execution profiling. See “Overview of Execution
Profiling” on page 5-2.

1-25

1 Getting Started

1-26

2

Tutorial: Simple Example
Applications for C166
Microcontrollers

This section includes the following topics:

Introduction (p. 2-2) An overview of the Embedded Target
for Infineon C166 Microcontrollers
real-time target, other components
required to generate stand-alone
real-time applications, and the
process of deploying generated code
on target hardware.

Tutorial: Creating a New Application
(p. 2-3)

A hands-on exercise in building
two simple applications from demo
models, including downloading and
executing generated code on a target
board.

Starting the Debugger on
Completion of the Build Process
(p. 2-12)

This exercise shows you how to
generate code and commence
debugging automatically as part of
the build process. Depending on
your debugger, you can debug the
application either on-chip or on a
hardware simulator.

Generating ASAP2 Files (p. 2-17) How to generate ASAP2 files for
your models.

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Introduction
This section describes how to use two example models to generate, download
and run stand-alone real-time applications for the C166 microcontroller. The
components required to generate stand-alone code are

• The Embedded Target for Infineon C166 Microcontrollers real-time target

• The example models provided: c166_serial_transmit and
c166_serial_io

• The Tasking C Cross-Compiler and Tasking CrossView Pro Debugger for
compiling and downloading generated code to the target hardware

As an alternative to CrossView, you can use the MiniMon utility for
downloading an application to your target hardware.

Using these, you can build the complete application. You do not need to
hand-write any C code to integrate the generated code into a final application.

The tutorial “Tutorial: Creating a New Application” on page 2-3 uses
two blocks from the Embedded Target for Infineon C166 Microcontrollers
library. For complete information on the Embedded Target for Infineon C166
Microcontrollers library blocks, see Chapter 6, “Blocks — By Category”.

2-2

Tutorial: Creating a New Application

Tutorial: Creating a New Application
In this tutorial, you build stand-alone real-time applications from models
incorporating blocks from the Embedded Target for Infineon C166
Microcontrollers library.

In the following sections, you will

• Examine two models

• Generate code from the models

• Download and run the code automatically as part of the build process

• Use MiniMon to monitor the code executing on the target

• Use the CrossView Pro Debugger to run a model on the C166 Simulator
or debug on-chip

Before You Begin
We assume that you are already familiar with Simulink and with the
Real-Time Workshop code generation and build process. This tutorial requires
the following specific hardware and software in addition to the Embedded
Target for Infineon C166 Microcontrollers:

• Phytec phyCORE-167CS development board, connected via serial port
to your PC

• Tasking C Cross-Compiler and CrossView Pro Debugger

• MiniMon download utility

You must make sure the target preferences have been set correctly. See
“Setting Target Preferences” on page 1-17.

Note Make sure the default.ini file in the MiniMon directory is not read
only. This can cause errors.

2-3

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Example Model 1: c166_serial_transmit
In this tutorial you start with a simple example
model, c166_serial_transmit, from the directory
matlabroot/toolbox/rtw/targets/c166/c166demos.

This directory is on the default MATLAB path.

1 Open the model by typing c166_serial_transmit at the command line.

This example shows the tutorial model c166_serial_transmit at the root
level.

The model contains a C166 Resource Configuration object. When building
a model with driver blocks from the Embedded Target for Infineon
C166 Microcontrollers library, you must always place a C166 Resource
Configuration object into the model (or the subsystem from which you want
to generate code) first.

The purpose of the C166 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks,
the C166 Resource Configuration object is not connected to other blocks

2-4

Tutorial: Creating a New Application

via input or output ports. Instead, driver blocks (such as the ASC0
Serial Transmit block in the example model) query the C166 Resource
Configuration object for required information.

For example, a driver block may need to find the system clock speed
that is configured in the C166 Resource Configuration object. The C166
microcontroller has a number of clocked subsystems; to generate correct
code, driver blocks need to know the speeds at which these clock busses
will run.

The C166 Resource Configuration window lets you examine and edit the
C166 Resource Configuration settings.

2 Double click the switch target configuration block, and then select
c167cs_hw. This selection sets the appropriate System_frequency and
External_oscillator_frequency in the Resource Configuration block and
the Link for TASKING option set.

3 To open the C166 Resource Configuration window, double-click the C166
Resource Configuration icon. The picture following shows the C166
Resource Configuration window for the c166_serial_transmit model.

In this tutorial, use the default C166 Resource Configuration settings.

2-5

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Note If hardware is running at a system frequency other than 20 MHz,
you must change this parameter appropriately.

Otherwise, observe, but do not change, the parameters in the C166
Resource Configuration window. By default, the c166drivers
configuration is selected. This shows parameters for the C166
microcontroller CPU in the System Configuration pane on the right.

4 View the settings for the serial driver block by clicking the
c166drivers/Asynchronous/Synchronous Serial Interface option
in the Active Configurations pane. These settings are shown in the
following illustration.

The settings appear in the Asynchronous/Synchronous Serial
Configuration pane on the right. Do not edit any of these parameters for
this tutorial. To learn more about the C166 Resource Configuration object,
see C166 Resource Configuration.

2-6

Tutorial: Creating a New Application

5 Close the C166 Resource Configuration window before proceeding.

Generating and Downloading Code
To generate code for the model:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog opens.

2 Select Real-Time Workshop in the tree, as shown below.

3 Click Build.

2-7

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Alternately, you can go straight to building the model by selecting
Tools > Real-Time Workshop > Build Model or using the shortcut
Ctrl+B.

Watch the progress messages in the command window as code is generated.

4 Click the MiniMon link in the MATLAB command window to download your
application via MiniMon. If the Minimon link has not been generated then
your C166 Link for TASKING option set is not compatible with MiniMon
downloads. This failure to generate could be because you are targeting one
of the simulator configurations or your board is using OCDS (on-board
wiggler) to connect to the target. The Minimon option should appear when:

• The Link for TASKING Build Action is set to Create and Build
Application Project, Create, Build and Execute Application
Project, or Create, Build and Debug Application Project.

• The option set is for hardware (rather than simulator).

• You are using a serial connection to connect to your target.

• If you have created your own template projects, the option to generate a
hex file must be selected.

Caution You must ensure the option to generate a hex file is turned
on. If you do not you will see the following warning:

It was not possible to generate a minimon script for this
build. This is because your EDE project template is not

configured to generate a .hex file which is required by
Minimon. To generate a .hex file as part of the build
you need to check the box 'Intel HEX records' in your
EDE project template.
You can change this option via Project -> Project Options
-> Linker/Locator -> Output Format.

When MiniMon is started, a dialog box appears asking you to reset your
hardware.

2-8

Tutorial: Creating a New Application

5 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon then disappears and the code
begins executing on the target.

Verifying Code Execution on the Target

1 Start MiniMon (select Start > Programs > MiniMon > MiniMon in
Windows, or navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application
is running, it sends the text "Hello World" plus a carriage return and a
linefeed over the serial interface.

Example 2: c166_serial_io
This example model demonstrates how to use both serial transmit and receive
blocks for the C166 microcontroller. You could use these blocks in this way
with your own Simulink models.

1 Open the model by typing c166_serial_io at the command line.

2-9

2 Tutorial: Simple Example Applications for C166 Microcontrollers

2 Double click on the switch target configuration block, then select c167cs_hw.
This will set the System_frequency and External_oscillator_frequency
in the Resource Configuration block and the Link for TASKING option set.

3 Press Ctrl+B or select Tools > Real-Time Workshop > Build Model.

Watch the progress messages as code is generated from the model.

4 You can download the application by clicking on the link at the end of the
build log. This link launches Minimon.

MiniMon is started to download the code to the target over the serial
connection. The MiniMon dialog appears asking you to reset your hardware.

5 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon then disappears and the code
begins executing on the target.

2-10

Tutorial: Creating a New Application

You can restart MiniMon to monitor the serial interface.

Verifying Code Execution on the Target

1 Start MiniMon (select Start > Programs > MiniMon > MiniMon in
Windows, or navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application
is running, it generates a sequence of 16–bit numbers, converts them to
ASCII characters, and transmits them over the serial interface.

3 If you enter the character r in the MiniMon command line field, the
application restarts at the beginning of the sequence. Examine the model
to see how this works: the Serial Receive block passes the restart command
through to the Generate Fibonacci Sequence subsystem. This subsystem
checks for the restart command.

2-11

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Starting the Debugger on Completion of the Build Process
As an alternative to downloading with MiniMon at the end of the build
process, you can start your debugger. Depending on the features provided by
your debugger, you can debug the application either on-chip or on a hardware
simulator.

For this example, you use another demo model, c166_user_io. This model is
designed to show you how to integrate your own hand-coded device drivers
with automatically generated code using Embedded Target for Infineon C166
Microcontrollers. This model is covered in detail in Chapter 3, “Integrating
Your Own Device Drivers”. You use it as an example here because you will
typically need to use the debugger in cases where you are integrating your
own code.

Also, note that running the debugger on-chip over the serial interface conflicts
with the serial transmit and receive blocks. The c166_user_io model does not
use serial blocks, so this avoids serial conflicts for this example. If you need to
debug an application that includes the serial transmit and receive blocks, you
must run the debugger using a hardware simulator; alternatively, it may be
possible to run your debugger on-chip without using the serial interface, for
example, if debugging over CAN or JTAG is available.

1 Open the model c166_user_io.

2 Select Simulation > Configuration Parameters.

3 Select Link for TASKING in the tree.

2-12

Starting the Debugger on Completion of the Build Process

4 Select the Build action Create, Build and Debug Application
Project.

5 Before generating code, check that your target preferences related to the
debugger are correctly configured. See “Setting Target Preferences” on
page 1-17.

6 Click OK.

7 Right-click the controller subsystem and select Real-Time
Workshop > Build Subsystem.

8 Click Build in the next dialog.

Watch the progress messages in the command window as code is generated.
At the end of the build process, your debugger launches automatically with
the application ready to run. You may now debug the application.

2-13

2 Tutorial: Simple Example Applications for C166 Microcontrollers

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface. If you
attempt to use the debugger once your application is running, you will no
longer be able to control the application from the debugger, because the
application is using the serial channel.

Fixed-Point Example Model: c166_fuelsys
The c166_fuelsys model is derived from the demo c166_fuelsys. The
floating point control algorithm from the original model has been converted
to fixed point to allow efficient code generation for the Infineon C166
microcontroller.

Note This demo requires Simulink Fixed Point.

The complete model includes a plant simulation as well as a fixed-point
implementation of the control algorithm. When you generate code for this
example, be sure to generate code for the control algorithm subsystem only:

1 Open the model c166_fuelsys.

2-14

Starting the Debugger on Completion of the Build Process

2 Select Simulation > Configuration Parameters.

3 Select Real Time Workshop in the tree, and then select the check box
Generate HTML report.

4 Make sure that the Generate code only option is not selected. The reason
for this step is that the code generation report obtains information from
MAP files that are created by your cross-compiler during the build process.
If the Generate code only option is on, these files are not generated,
which prevents the generation of the code generation report.

5 Select Link for TASKING in the tree, and observe the Build Action is
Create and Build Application Project. You must have one of the Build
options selected to get the code profile report (with RAM/ROM usage):

• Create and Build Application Project

• Create, Build and Execute Application Project

• Create, Build and Debug Application Project

2-15

2 Tutorial: Simple Example Applications for C166 Microcontrollers

6 Close the Configuration Parameters dialog box.

7 Right-click the fuel rate controller block.

8 From the pop-up menu, select Real Time Workshop > Build Subsystem.

9 On the following dialog, click Build.

When code generation is complete, the Code Generation Report appears in
your Help browser. Here you can review the RAM and ROM requirements of
the model. To do this, left-click the link Code profile report in the left list.
If you compared with the original floating-point version of the fuelsys control
algorithm: you would find that using the fixed-point implementation results
in a considerable reduction in both RAM and ROM.

2-16

Generating ASAP2 Files

Generating ASAP2 Files
ASAP2 is a data definition standard by the Association for Standardization of
Automation and Measuring Systems (ASAM). ASAP2 is a standard description
for data measurement, calibration, and diagnostic systems. The Embedded
Target for Infineon C166 Microcontrollers lets you export an ASAP2 file
containing information about your model during the code generation process.
See also “Compatibility with Calibration Packages” on page 7-26.

Before you begin generating ASAP2 files with the Embedded Target for
Infineon C166 Microcontrollers, you should read the “Generating ASAP2
Files” section of the Real-Time Workshop documentation. That section
describes how to define the signal and parameter information required by
the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog appears.

2 Select Interface (under Real-Time Workshop) in the tree.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame, as shown following.

2-17

2 Tutorial: Simple Example Applications for C166 Microcontrollers

4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

• The standard Real-Time Workshop ASAP2 file generation does not
include the memory address attributes in the generated file. Instead,
it leaves a placeholder that must be replaced with the actual address by
postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your EDE project template is not
configured to generate a .map file in the correct format.

2-18

Generating ASAP2 Files

To generate a .map file in the correct format you need to
setup the following options in your EDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

Embedded Target for Infineon C166 Microcontrollers performs this
postprocessing for you. To do this, it first extracts the memory address
information from the map file generated during the link process. Secondly,
it replaces the placeholders in the ASAP2 file with the actual memory
addresses. This postprocessing is performed automatically and requires no
additional input from you.

For an example of a model that is configured to generate an ASAP2 file, see
c166_ccp.

2-19

2 Tutorial: Simple Example Applications for C166 Microcontrollers

2-20

3

Integrating Your Own
Device Drivers

This section includes the following topics:

Integrating Hand-Coded Device
Drivers with a Simulink Model
(p. 3-2)

Overview of the steps required to
integrate your device drivers with a
Simulink model.

Preparing Input and Output Signals
to the Device Driver Functions
(p. 3-3)

How to structure your model’s
inputs and outputs using the demo
c166_user_io as an example.

Calling the Device Driver Functions
from c166_main.c (p. 3-6)

Real-Time Workshop settings to
call your hand-coded device driver
functions.

Adding the I/O Driver Source to the
List of Files to Build (p. 3-8)

How to tell Real-Time Workshop to
integrate your device driver code.

Tutorial: Using the Example Driver
Functions (p. 3-9)

A tutorial to show you the example
driver functions and how they are
integrated with Embedded Target for
Infineon C166 Microcontrollers. This
includes generating, downloading
and running code from the controller
subsystem of the c166_user_io
demo model.

For a guide to creating device drivers, see "Developing Device Drivers for
Embedded Targets" in the Developing Embedded Targets for Real-Time
Workshop Embedded Coder documentation.

3 Integrating Your Own Device Drivers

Integrating Hand-Coded Device Drivers with a Simulink
Model

Embedded Target for Infineon C166 Microcontrollers has a limited set of I/O
device driver blocks. This means that, for most applications, it is necessary to
write some device driver code by hand.

This approach requires the following steps:

1 Identify the model inputs/outputs that must be read from/written to device
driver functions.

2 Set the data type and storage class for each input or output signal so that it
is compatible with your device driver code.

3 Use the hooks provided in the automatically generated c166_main.c to call
your device driver initialization, input, and output functions.

4 Add your device driver source code to the list of files that must be included
in the build process.

Each of these steps is described in the following sections. An example model
is provided: c166_user_io.

An alternative approach is to create Simulink I/O blocks that automatically
generate the device driver code. This approach may be worth considering if
you need to reconfigure the I/O behavior frequently. If you want to take this
alternative approach, you should consult the documentation on S-functions
and TLC. See the section Developing Device Drivers for Embedded Targets
in the document Developing Embedded Targets for Real-Time Workshop
Embedded Coder.

A useful tool for creating C166 device drivers is the freeware Digital
Application Engineer DAvE from Infineon. You can find this at the following
URL:

http://www.infineon.com/dave

Using this package along with the hardware User’s Manual greatly eases the
task of developing your own device driver code.

3-2

http://www.infineon.com/dave

Preparing Input and Output Signals to the Device Driver Functions

Preparing Input and Output Signals to the Device Driver
Functions

Structure your model similarly to c166_user_io. Place the control algorithm
that will be targeted onto the C166 microcontroller hardware in a separate
subsystem. Before generating code, you can run this model in closed-loop
simulation; this allows you to validate the correct behavior of your control
algorithm before running it in real time.

When structuring your model in this way, you should make sure that all the
input and output signals to the control algorithm are channeled through
top-level input or output ports in the control algorithm subsystem.

By default, when you generate code for the control algorithm subsystem,
Real-Time Workshop chooses variable names and data structures for each of
the top-level input and output signals. However, in this case, you must ensure
that the variables are global, and that their names and data structures match
those that are required by the hand-written device driver functions.

The example model c166_user_io illustrates some alternative ways to
achieve this. The simplest method is to

1 Select one of the signals in your model connected to a top-level output
port in the control algorithm subsystem. As an example, open the demo
c166_user_io.

2 Open the controller subsystem.

3 Click the output_PWM0 signal.

4 Select the menu item Edit > Signal Properties.

The Signal Properties dialog appears, as in the example following.

3-3

3 Integrating Your Own Device Drivers

5 Enter the required variable name for your signal in the Signal name edit
box. This must match the variable name required by your hand written
device driver functions.

6 Click the Real-Time Workshop tab and select ExportedGlobal from the
RTW storage class drop-down menu.

When you generate code for this model, Real-Time Workshop uses the variable
name that you have specified and creates an extern declaration in the model
header file. By using a #include directive to include this model header file in
your device driver source code, it is possible for the device driver functions
to read or write this variable that is defined in the Real-Time Workshop
generated code.

A more sophisticated approach is to use custom storage classes. By using
custom storage classes, you can collect a number of input or output variables
together into a C struct, resulting in more readable code. The LED output
signal in the c166_user_io uses a custom storage class, which uses a single
bit in a bitfield variable. See “Tutorial: Using the Example Driver Functions”
on page 3-9 for details about the different ways the model variables are
defined and referenced to interface the hand-coded driver functions and the
automatically generated code.

3-4

Preparing Input and Output Signals to the Device Driver Functions

By defining your own custom storage classes, you have complete control over
the data structures that are used for any signal in the model. See the custom
storage class documentation in the Real-Time Workshop Embedded Coder
documentation for more details.

3-5

3 Integrating Your Own Device Drivers

Calling the Device Driver Functions from c166_main.c
You should check the option to include I/O driver function hooks. When
Real-Time Workshop generates code for this model, it includes some extra
calls to user-supplied I/O device driver functions:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog appears.

2 Select C166 Options (1), under Real-Time Workshop in the tree, as
shown in the example below.

3-6

Calling the Device Driver Functions from c166_main.c

3 Select the check box option for including I/O driver function hooks.

These functions are

user_io_initialize — called following model initialization

base_rate_model_inputs — read model inputs, called at the base
sample rate

base_rate_model_outputs — write model outputs, called at the base
sample rate

sub_rate_i_model_inputs — read model inputs, called at the start of
sub-rate i, where i=1, 2, ...

sub_rate_i_model_outputs — write model outputs, called at the start
of sub-rate i, where i=1, 2, ...

If you are using the automatically generated c166_main.c, then these
function names are fixed.

For an example implementation of these functions, open the model
c166_user_io and follow the link to open the I/O driver source files. These
are described in “Tutorial: Using the Example Driver Functions” on page 3-9.

3-7

3 Integrating Your Own Device Drivers

Adding the I/O Driver Source to the List of Files to Build
You must tell the Real-Time Workshop build process to compile and link the
I/O driver source files that you have written. You do so by adding the files
to the custom code dialog box. Access the Configuration Parameters dialog
box, look under Real-Time Workshop > Custom Code, and add the necessary
Include Directories and Source Files, as shown in the following figure.

You are now ready to build your model and run it in real time.

You can examine an example of this in the example model c166_user_io. See
the instructions in “Tutorial: Using the Example Driver Functions” on page
3-9. Step 8 shows you how to specify the location of your own hand-coded
drivers.

3-8

Tutorial: Using the Example Driver Functions

Tutorial: Using the Example Driver Functions
The example model c166_user_io demonstrates how to integrate user-defined
device driver code. In this tutorial, you generate code from the controller
subsystem, which automatically downloads and runs on the target.

The model c166_user_io illustrates three alternative methods for using
global variables to interface the hand-written driver functions with the
Real-Time Workshop automatically generated code. The three different
methods are illustrated by these signals:

• input_adc0

• output_PWM0

• output_led_D3

For input_adc0, the variable is defined in the hand code and referenced in
the Real-Time Workshop code.

For output_PWM0, the variable is defined in the Real-Time Workshop code and
referenced in the hand code.

For output_led_D3, a more sophisticated approach is used, involving custom
storage classes. In this case, the variable is again defined in the Real-Time
Workshop code and referenced by the hand code; the difference is that the
variable is defined and referenced as a bitfield using C166 microcontroller
bit-addressable memory:

1 Open the model c166_user_io.

3-9

3 Integrating Your Own Device Drivers

2 Open the controller subsystem by double-clicking and select the signal
input_adc0.

3-10

Tutorial: Using the Example Driver Functions

3 Select the menu item Edit > Signal Properties.

The Signal Properties dialog appears.

3-11

3 Integrating Your Own Device Drivers

Click the Real-Time Workshop tab and observe that the RTW storage
class is ImportedExtern. When you generate code for this model,
Real-Time Workshop uses the specified variable name input_adc0 and
creates an extern declaration in the model header file. Since the Real-Time
Workshop storage class is ImportedExtern, this variable must be defined
in the hand-written driver code. When you open the file user_io.c in
the next step, you will find the line uint16_T input_adc0 that provides
this definition.

4 In the top level model, double-click the link Open the i/o driver source
files.

Two source files open in the MATLAB editor, user_io.h and user_io.c.

5 Click the user_io.h tab, as shown above. Here you can see extern
uint16_T input_adc0 under the heading Declare variables that
are imported by the model. Also look at the #include directive in

3-12

Tutorial: Using the Example Driver Functions

user_io.c. The extern declaration and incorporating the header file into
the build makes it possible for the device driver functions to read or write
this variable that is defined in the Real-Time Workshop generated code.

6 You need to instruct Real-Time Workshop to compile and link the
hand-coded I/O driver source files in the build process. You do so by
adding the files to the custom code dialog box. Access the Configuration
Parameters dialog box, select Real-Time Workshop > Custom Code in the
tree, and review the Include Directories and Source Files, as shown in
the following figure.

7 Select C166 Options (1) (under Real-Time Workshop in the tree).
Observe the selected option Include input/output driver function
hooks.

3-13

3 Integrating Your Own Device Drivers

This instructs Real-Time Workshop to include extra calls to the
user-supplied I/O device driver functions when code is generated for this
model.

8 Select Interface in the tree. Observe the option Floating-point numbers
is not selected.

If your model does not use floating point, you should make sure this option
is not checked to use integer code only. Using only integer code results in
smaller code size and faster real-time execution. It also speeds up the build
process because libraries that are used only by floating-point applications
are not included.

3-14

Tutorial: Using the Example Driver Functions

Explore the user_io.c file. This example file is intended to show you some
hand-coded input/output driver functions and how they can be integrated
with Embedded Target for Infineon C166 Microcontrollers.

You can see sections for initializing these input/output drivers: ADC, digital
I/O, and Pulse Width Modulation (PWM).

9 Close the Signal Properties dialog and Configuration Parameters dialog
if they are still open.

Prior to generating code, you can run the model in closed-loop simulation;

just click Start Simulation () in the toolbar. You can open the
Scope block to see the model output. If you use this model as a basis
for integrating your own device driver code, this closed-loop simulation
allows you to validate the correct behavior of your control algorithm before
running it in real time.

10 Generate code by right-clicking the controller subsystem and selecting
Real-Time Workshop > Build Subsystem.

11 Click Build in the Build code for Subsystem: Controller dialog that
appears. Watch the messages as the process proceeds and code is generated.

If you are using a Phytec phyCORE module with HD200 development
board, the digital output is connected to the LED D3. You can see successful
execution of the code when the LED blinks.

3-15

3 Integrating Your Own Device Drivers

3-16

4

Custom Storage Class
for C166 Microcontroller
Bit-Addressable Memory

This section contains the following topics:

Specifying C166 Microcontroller
Bit-Addressable Memory (p. 4-2)

How to use Embedded Target for
Infineon C166 Microcontrollers
to take advantage of C166
microcontroller bit-addressable
memory. This can significantly
reduce code size and increase
execution speed.

Using the Bitfield Example Model
(p. 4-3)

This is a step-by-step guide to the
example model c166_bitfields.
Included is a comparison with
another custom storage class
variable in c166_user_io

4 Custom Storage Class for C166 Microcontroller Bit-Addressable Memory

Specifying C166 Microcontroller Bit-Addressable Memory
Embedded Target for Infineon C166 Microcontrollers allows you to take
advantage of C166 microcontroller bit-addressable memory. The example
model c166_bitfields demonstrates this. By using bit-addressable memory,
the compiler is able to use special assembler instructions that significantly
reduce code size and increase execution speed.

At the Simulink level, this is done by using the custom storage class
SimulinkC166.Signal. To specify that a signal in the model should use
bit-addressable memory, you must perform the following steps:

1 Ensure that the signal has the Simulink data type 'boolean'.

2 Attach a label to the signal, either by using Edit > Signal Properties or
by double-clicking the signal and typing in the name directly; this label will
be used as the bitfield variable name in the generated code.

3 Create a new Simulink data object of type SimulinkC166.Signal with
the same name as the signal label. See the file c166bitfielddata.m for
an example.

4 Select View > Model Explorer and click the base workspace to inspect all
the Simulink data objects that are available to the model.

5 Build the model.

One of the signals in the demo model c166_user_io also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. You can compare this with the c166_bitfields
example; it is included in the steps in “Using the Bitfield Example Model”
on page 4-3.

4-2

Using the Bitfield Example Model

Using the Bitfield Example Model
You can use the example model c166_bitfields to see the automatic
debugger start at the end of the build.

Follow these steps:

1 Open c166_bitfields.

2 Press Ctrl+B to build the model.

3 Examine the project generated code in the TASKING EDE:

a Select Search > Multiple Sources.

4-3

4 Custom Storage Class for C166 Microcontroller Bit-Addressable Memory

b In the dialog box, select Project Space under Multiple Sources, and enter
_bita for the search string.

4 You can double-click Open setup file in the model to open the file
c166bitfielddata.m in the MATLAB editor.

4-4

Using the Bitfield Example Model

This file creates a new Simulink data object using the custom storage class
SimulinkC166.Signal. By using custom storage classes, you can collect
a number of input or output variables together into a C struct, resulting
in more readable code. By defining your own custom storage classes, you
have complete control over the data structures that are used for any
signal in the model. See the custom storage class documentation in the
Real-Time Workshop Embedded Coder User’s Guide for more details. You
can double-click Read documentation for custom storage classes in
the model to go directly to the relevant Real-Time Workshop Embedded
Coder help section.

5 You can double-click Inspect data objects to inspect all the Simulink data
objects that are available to the model.

4-5

4 Custom Storage Class for C166 Microcontroller Bit-Addressable Memory

Here you can see the SimulinkC166.Signal data object and you can click
on each object to inspect the properties.

6 One of the signals in the demo model c166_user_io also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. Open c166_user_io.

7 Double-click Open custom storage class data file.

The file c166useriodata.m opens in the MATLAB editor.

4-6

Using the Bitfield Example Model

Compare with c166bitfielddata.m.

For more details on the variables in this model, see “Tutorial: Using the
Example Driver Functions” on page 3-9.

4-7

4 Custom Storage Class for C166 Microcontroller Bit-Addressable Memory

4-8

5

Execution Profiling

This section contains the following topics:

Overview of Execution Profiling
(p. 5-2)

The steps involved in performing
execution-profiling analysis on a
model.

Real-Time Workshop Options for
Execution Profiling (p. 5-5)

How to configure options for
execution profiling.

Multitasking Demo Model (p. 5-9) Step-by-step-instructions for
running the multitasking demo and
interpreting the execution profiling
results.

5 Execution Profiling

Overview of Execution Profiling
Embedded Target for Infineon C166 Microcontrollers provides a set of utilities
for recording, uploading, and analyzing execution profile data for timer-based
tasks and asynchronous Interrupt Service Routines (ISRs). With these
utilities, you can

• Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed, and
completed.

• Generate a report with information on

- Maximum number of overruns for each timer-based task since model
execution began

- Maximum turnaround time for each timer-based task since model
execution began

- Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

To perform execution-profiling analysis on a model, you must perform the
following steps:

1 Place a copy of the appropriate execution profiling block in your model:

• Execution Profiling via ASC0 if using a serial connection

• Execution Profiling via CAN A if using CAN with a C166 processor

• Execution Profiling via TwinCAN A if using CAN with an XC16x
processor variant

2 Select the Execution profiling option under Real-Time Workshop options
in the Configuration Parameters dialog. See “Real-Time Workshop Options
for Execution Profiling” on page 5-5.

3 Connect the target processor to your host PC (with a serial or CAN cable).

4 Build, download, and run the model.

5 Initiate execution profiling by running the command profile_c166. See
below for more information on the profiling command.

5-2

Overview of Execution Profiling

Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of concurrent
task overruns since model execution began are updated whenever a
previous worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is reserved to log
the data.

The Profiling Command
Use the profiling command as follows:

profile_c166(connection)

Specify your connection as 'can' or 'serial', for use with the CAN or
ASC0 execution profiling blocks.

Optionally, you can specify your configuration as follows:

profdata = profile_c166(connection, 'ModelName', modelname)

This specification automatically sets the bit rate by analyzing modelname and
extracting the correct connection bit rate setting from the model. modelname
should be set to the name of a model which is currently open and running
on the target.

The execution profiling data is returned in the format documented by
exprofile_unpack.

Alternatively, you can set the bitrate for the connection to the target manually
as follows:

profdata = profile_c166(connection, 'BitRate', bitrate)

bitrate must be the same as the bit rate specified for the application that is
running on the target.

5-3

5 Execution Profiling

Definitions
Task turnaround time is the elapsed time between start and finish of a
task. If the task is not preempted, then the task turnaround time is equal
to the task execution time.

Task execution time is that part of the time between task start and finish
when the task is actually running and not preempted by another task. Note
that the task execution time cannot be measured directly, but is inferred from
the task start and finish time and the intervening periods during which it was
preempted by another task. Note that, in performing these calculations, no
account is taken of processor time consumed by the scheduler while switching
tasks: this means that, in cases where preemption has occurred, the reported
task execution times will overestimate the true values.

Concurrent task overruns occur when a timer task does not complete
before that same task is next scheduled to run. Depending on how the
real-time scheduler is configured, a task overrun may be handled as a
real-time failure. Alternatively, a small number of concurrent task overruns
may be allowed to accommodate cases where a task occasionally takes longer
than normal to complete.

Execution Profiling Blocks
See the block reference sections:

• C166 Execution Profiling via ASC0

• C166 Execution Profiling via CAN A

• C166 Execution Profiling via TwinCAN A

5-4

Real-Time Workshop Options for Execution Profiling

Real-Time Workshop Options for Execution Profiling
You can see these options by selecting C166 Options (1) (under Real-Time
Workshop in the tree) in the Configuration Parameters dialog.

Execution Profiling
If this option is selected, then the generated code for the model will be
“instrumented” with function calls at the beginning and end of each task or
ISR to be profiled. These function calls read a timer (on C166 a free running
timer is selected from the options in the C166 Resource Configuration block)
and log this reading along with a task identifier.

When code for the model is generated, these functions will update data
on the worst-case turnaround time for each timer-based task as well as
the worst-case number of concurrent task overruns, whenever a previous

5-5

5 Execution Profiling

worst-case value is exceeded. Additionally, when a trigger is provided, data
will be logged over a period of time to record all task start and finish times.
The trigger signal can be supplied, for example, by the block C166 Execution
Profiling via CAN A.

Number of Data Points
When a snapshot of task and ISR activity is logged, this data is stored in
memory that is statically allocated at build time. Each data point requires 4
bytes on C166. The larger the number of data points to be stored, the more
RAM that must be reserved for this purpose. At the end of a logging run, the
data must be uploaded to the host computer for analysis; this is typically
achieved by using one of the C166 execution profiling blocks — via ASCO,
CAN A, or TwinCAN A. See the reference pages for C166 Execution Profiling
via ASC0, C166 Execution Profiling via CAN A, and C166 Execution Profiling
via TwinCAN A.

Task Scheduler Overrun Options
These scheduler options configure the allowable number of concurrent task
overruns. You can see these options on the C166 Options (1) section in the
Configuration Parameters dialog.

5-6

Real-Time Workshop Options for Execution Profiling

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks
do not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual to
complete (e.g., if extra processing is required when a special event occurs);
if the task overrun is only occasional, then it is possible for the scheduler to
catch up after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped.

As an example, if the base rate is 1 ms and the maximum number of
concurrent base-rate overruns is set to 5 then it is possible for the base rate
task to run for almost 6 ms before failure occurs. Once the overrun has
occurred, it is necessary for subsequent executions of the base rate to complete
in less than 1 ms in order that the lost time is recovered.

5-7

5 Execution Profiling

The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

If sub-rate overruns are allowed, then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this
causes the numerical behavior in real time to differ from the behavior in
simulation. To see an illustration of this effect, try running the demo model
c166_multitasking, described in the next section. To disallow sub-rate
overruns and ensure that this effect does not occur, you should set Maximum
number of concurrent sub-rate overruns to zero.

Note If the option "Maximum number of concurrent sub-rate overruns" is set
to a value greater than zero, then the behavior of any Rate-Transition blocks
may be affected. Specifically, if the model contains a Rate Transition block
where the option "Ensure deterministic data transfer (maximum delay)" is
selected, then this setting may not be honored.

5-8

Multitasking Demo Model

Multitasking Demo Model
The demo model c166_multitasking illustrates both execution profiling and
the preemptive multitasking scheduler with configurable overrun handling.

The model is multirate, having tasks running at 1 ms, 4 ms, and 16 ms. It is
configured to use the preemptive multitasking scheduler.

A special feature of this model is that each task is designed to perform an
increasing number of calculations to increase the processor loading until
that task reaches a target turnaround time. This behavior ensures that task
overruns occur to demonstrate the behavior of the model in this situation.

Each block in the model, labeled Load base rate, Load sub-rate 1, Load
sub-rate 2 performs calculations, the result of which should always be 1
both in simulation and in real time. Any other result is a failure and should
never occur.

The Test Rate Interaction blocks are designed to test whether data is
transferred between tasks in a deterministic manner. In simulation, the
output of each of these blocks is always zero, indicating that there is no drift
between tasks running at different rates. When running in real time, under
normal circumstances, the output is also zero; in this case the real-time
behavior is deterministic and exactly matches the results in simulation. Even
if task preemption and base-rate overruns occur, the output of these blocks
will be zero so that the real-time behavior faithfully reproduces the results
in simulation. The circumstance under which drift occurs is if sub-rate
overruns occur during execution in real time; if this behavior is not desired,
you should disallow sub-rate overruns by setting the maximum allowed
number of sub-rate overruns to zero in the C166 Options (1) section in the
Configuration Parameters dialog (see “Task Scheduler Overrun Options”
on page 5-6).

You can double-click the block provided in the model to switch between
profiling over serial or CAN connections.

Running the Multitasking Demo

1 Open the model by typing at the command line

5-9

5 Execution Profiling

c166_multitasking

If viewing in the Help browser, you can click the link to open the model. If
you update the diagram you can see the sample-time colors.

2 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog appears.

3 Select Link for TASKING in the tree and change the Build action to
Create, Build and Execute Application Project. Click OK to dismiss
the dialog box.

4 Make sure the target is connected to the host PC via serial or CAN cable.
The default setting in this demo model is serial. You can double-click the
Switch Execution Profiling Connection block to toggle between blocks for
serial and CAN. See below for instructions if using CAN.

5 To build and run the model, select the model window, and then press
Ctrl+B.

5-10

Multitasking Demo Model

Watch the messages in the command window as code is generated and
loaded into the TASKING EDE, then the CrossView Pro Debugger starts,
connects to the target, and downloads the code.

6 In the CrossView window, click Run in the toolbar to start the application
running on the target.

7 At the command line, type

profile_c166 ('serial')

You will see messages in the command window as profile_c166 runs.

When the data has been obtained the Help browser and a figure window
appear, displaying the HTML report and the task execution profile.

8 Scroll to view the HTML report on task timings and use the controls to zoom
in on the MATLAB graphic to examine the details of the task overruns.

If using CAN, be sure to use CAN channel 0 (not 1) on the PC. You can
double-click the Switch Execution Profiling Connection block in the model to
switch to CAN, and follow the same instructions as for a serial connection,
except step 7 when the application is running. At the command line, type

profile_c166 ('CAN')

You will see command line messages as the function tests the CAN channel,
and requests and collects profiling data. When using CAN, it can be useful to
run a monitor program such as btest32 to verify that the model is running —
for example you will see messages appearing on the CAN bus and you can see
that you have connected the correct CAN channel.

Interpreting the MATLAB Graphic
Dark shaded areas show the region where a task is executing. Light shaded
areas show the region where a task is preempted by a higher priority task
or ISR. Triangles indicate the beginning of a task. An example is shown
following.

5-11

5 Execution Profiling

Zoom in to see the details of times that tasks are executing and being
preempted, as shown in the following example.

5-12

Multitasking Demo Model

.

The Generated HTML Report
See “Definitions” on page 5-4 for the terms task turnaround time, task
execution time, and concurrent task overruns.

All times are in seconds. The timer resolution is 4e-007 seconds and the
measurement range is 0.026214 seconds.

The report contains the following information:

• Worst-case task turnaround times

5-13

5 Execution Profiling

- Maximum task turnaround time for each task since model execution
started. Note that the maximum task turnaround time that can be
measured is limited by the timer measurement range.

• Maximum number of overruns for each task

- Maximum number of concurrent task overruns since model execution
started

• Analysis of recorded profiling data

- Analysis of task turnaround times and task execution times based on
recorded data over a period of 0.18139 second

5-14

6

Blocks — By Category

C166 Drivers (p. 6-2) Device driver blocks for Infineon
C166 Embedded Target

CAN Message Blocks and CAN
Drivers (p. 6-5)

Blocks that provide CAN
functionality to Infineon C166
Embedded Target

6 Blocks — By Category

C166 Drivers

Top-Level Blocks (p. 6-2) Resource configuration for C166
microcontrollers

Asynchronous/Synchronous Serial
Interface (p. 6-2)

Serial transmit and receive

CAN Interface (p. 6-3) Controller Area Network (CAN)
utilities

Execution Profiling (p. 6-3) Configure execution profiling over
CAN, TwinCAN, or serial connection

TwinCAN Interface (p. 6-3) Controller Area Network (CAN)
utilities for XC16x

Interrupts (p. 6-4) Generate function-call triggers on
interrupt

Utilities (p. 6-4) Configure for predefined hardware
configurations

Digital Input/Output (p. 6-4) Configure digital input/output

Top-Level Blocks

C166 Resource Configuration Support device configuration for
C166 microcontrollers

Asynchronous/Synchronous Serial Interface

Serial Receive Configure C166 microcontroller for
serial receive

Serial Transmit Configure C166 microcontroller for
serial transmit

6-2

C166 Drivers

CAN Interface

CAN Bus Status Output Bus Off or Error Warning
state of CAN module

CAN Calibration Protocol (C166) Implement CAN Calibration Protocol
(CCP) standard

CAN Receive Receive CAN messages from
CAN module on Infineon C166
microprocessor

CAN Reset Reset CAN module

CAN Transmit Transmit CAN messages via CAN
module on Infineon C166

For information about CAN message blocks and CAN drivers, see the “CAN
Blockset Reference”.

Execution Profiling

C166 Execution Profiling via ASC0 Provide serial interface to execution
profiling engine

C166 Execution Profiling via CAN A Provide CAN interface to execution
profiling engine via CAN channel A

C166 Execution Profiling via
TwinCAN A

Provide CAN interface to execution
profiling engine via TwinCAN
channel A for XC16x variants of
Infineon C166

TwinCAN Interface

CAN Calibration Protocol (C166,
TwinCAN)

Implement CAN Calibration Protocol
(CCP) standard for XC16x variants
of Infineon C166

TwinCAN Bus Status Output Bus Off or Error Warning
state of a CAN node on XC16x
variants of Infineon C166

6-3

6 Blocks — By Category

TwinCAN Receive Receive CAN messages via
TwinCAN module on XC16x variants
of Infineon C166

TwinCAN Reset Reset CAN node on XC16x variants
of Infineon C166

TwinCAN Transmit Transmit CAN messages from
TwinCAN module on XC16x variants
of Infineon C166

Interrupts

Fast External Interrupt Generate asynchronous function-call
trigger when interrupt occurs

Utilities

Switch Target Configuration Configure model and Target
Preferences to one of a set of
predefined hardware configurations

Digital Input/Output

Digital In Digital input driver that reads value
of specified port or pin number

Digital Out Digital output driver that sets logical
state of specified pin

6-4

CAN Message Blocks and CAN Drivers

CAN Message Blocks and CAN Drivers
For information about CAN message blocks and CAN drivers, see the “CAN
Blockset Reference”.

6-5

6 Blocks — By Category

6-6

7

Blocks — Alphabetical List

C166 Execution Profiling via ASC0

Purpose Provide serial interface to execution profiling engine

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Execution Profiling

Description The C166 Execution Profiling via ASC0 block provides a serial interface
to the execution profiling engine. On receipt of a start command
message, logging of execution profile data begins. On completion of a
logging run, the recorded data is automatically returned via the serial
interface (ASC0). See also the MATLAB command profile_c166.

profile_c166('serial') collects and displays execution profiling
data from a C166 target microcontroller that is running a suitably
configured application generated by Embedded Target for Infineon
C166 Microcontrollers. The connection may be set to 'serial' in
order to collect data via a serial connection between the target and
the host computer.

The data collected is unpacked and then displayed in a summary HTML
report and as a MATLAB graphic.

See “The Profiling Command” on page 5-3 for instructions for setting
the bit rate automatically or manually.

To configure a model for use with execution profiling, you must perform
the following steps:

1 Check the appropriate option in the Target Specific Options tab
of the Real-Time Workshop Options dialog.

2 Make sure the model includes a C166 Execution Profiling block that
provides an interface between the target-side profiling engine, and
the host-side computer from which this command is run.

For more information, see Chapter 5, “Execution Profiling” which
includes instructions for the example demo c166_multitasking.

7-2

C166 Execution Profiling via ASC0

Dialog
Box

Sample time
The sample time of the block. The faster the sample time of the
block, the faster data will be uploaded at the end of the execution
profiling run. You may want to run this block slower than the
fastest rate in the system because the execution profiling itself
imposes some loading on the processor. You can minimize this
extra loading by not running it at the fastest rate.

7-3

C166 Execution Profiling via CAN A

Purpose Provide CAN interface to execution profiling engine via CAN channel A

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Execution Profiling

Description The C166 Execution Profiling via CAN A block provides a CAN interface
to the execution profiling engine. On receipt of a start command
message, logging of execution profile data begins. On completion of a
logging run, the recorded data is automatically returned via CAN. You
must specify the message identifiers for the start command and the
returned data. These identifiers must be compatible with the values
used by the host-side part of the execution profiling utility. See also the
MATLAB command profile_c166.

profile_c166(connection) collects and displays execution profiling
data from a C166 target microcontroller that is running a suitably
configured application generated by Embedded Target for Infineon C166
Microcontrollers. The connection may be set to 'CAN' in order to collect
data via a CAN connection between the target and the host computer.
To use the CAN connection, you must have suitable CAN hardware
installed on the host computer. This function tests for availability of
CanCardX 1 or CanAc2Pci1 and defaults to a bit rate of 500K bits per
second. If you need to use a different configuration, you should make a
copy of this file (with a different name) and change the configuration
data as required. The data collected is unpacked then displayed in a
summary HTML report and as a MATLAB graphic.

See “The Profiling Command” on page 5-3 for instructions for setting
the bit rate automatically or manually.

To configure a model for use with execution profiling, you must perform
the following steps:

1 Check the appropriate option in the Target Specific Options tab
of the Real-Time Workshop Options dialog.

7-4

C166 Execution Profiling via CAN A

2 Make sure the model includes a C166 Execution Profiling block that
provides an interface between the target-side profiling engine, and
the host-side computer from which this command is run.

For more information, see Chapter 5, “Execution Profiling” which
includes instructions for the example demo c166_multitasking.

Dialog
Box

Start command CAN message identifier
Set the identifier of the message to start logging execution
profiling data. You should use the default unless you have
modified profile_c166. This identifier must be compatible with

7-5

C166 Execution Profiling via CAN A

the values used by the host-side part of the execution profiling
utility (profile_c166).

The utility profile_c166 provides a mechanism for initiating
an execution profiling run and for uploading the recorded data
to the host machine. To perform this procedure using a CAN
connection between host and target, profile_c166 first sends a
CAN message that is a command to start an execution profiling
run. The CAN identifier for this message must be specified as the
same value on the target as on the host. The host-side values
are hard-coded in profile_c166. If you are using an unmodified
version of the host-side utility, you should use the default value
for this CAN message identifier. These are visible to help you
avoid using the same identifier for other tasks.

Returned data CAN message identifier
Set the message identifier for the returned data. As with the
message identifier for the start command, the value specified here
must be the same as the hard-coded value in profile_c166.

Sample time
The sample time of the block. The faster the sample time of the
block, the faster data will be uploaded at the end of the execution
profiling run. You may want to run this block slower than the
fastest rate in the system because the execution profiling itself
imposes some loading on the processor. You can minimize this
extra loading by not running it at the fastest rate.

7-6

C166 Execution Profiling via TwinCAN A

Purpose Provide CAN interface to execution profiling engine via TwinCAN
channel A for XC16x variants of Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Execution Profiling

Description The C166 Execution Profiling via TwinCAN A block is for the TwinCAN
interface and performs the same functions as the C166 Execution
Profiling via CAN A block. For block parameter descriptions, see the
C166 Execution Profiling via CAN A reference page.

7-7

C166 Resource Configuration

Purpose Support device configuration for C166 microcontrollers

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library

Description The C166 Resource Configuration block differs in function and behavior
from conventional blocks. Therefore, we refer to this block as the C166
Resource Configuration object.

The C166 Resource Configuration object is required to provide
information that is used to configure driver blocks and timer interrupts.

• You must include this block in your model if

- You are using any of the driver blocks supplied with Embedded
Target for Infineon C166 Microcontrollers

- You are taking advantage of the automatically generated scheduler
that is driven by timer interrupts.

• You do not need to include the C166 Resource Configuration object in
your model if you are not using any of the C166 driver library blocks,
and if you do not require the automatically generated scheduler (for
example, if you are supplying your own main.c).

The C166 Resource Configuration object maintains configuration
settings that apply to the C166 microcontroller. Although the C166
Resource Configuration object resembles a conventional block in
appearance, it is not connected to other blocks via input or output ports.
This is because the purpose of the C166 Resource Configuration object is
to provide information to other blocks in the model. C166 device driver
blocks register their presence with the C166 Resource Configuration
object when they are added to a model or subsystem; they can then
query the C166 Resource Configuration object for required information.

To install a C166 Resource Configuration object in a model or
subsystem, open the C166 Drivers library and select the C166 Resource
Configuration icon. Then drag and drop it into your model or subsystem,
like a conventional block.

7-8

C166 Resource Configuration

Having installed a C166 Resource Configuration object into your model
or subsystem, you can then select and edit configuration settings in the
C166 Resource Configuration window. See “Using the C166 Resource
Configuration Window” on page 7-10 for further information.

Note If your model or subsystem requires a C166 Resource
Configuration object (see above), you should place it at the top-level
system for which you are going to generate code. If your whole
model is going to run on the target processor, put the C166 Resource
Configuration object at the root level of the model. If you are going to
generate code from separate subsystems (to run specific subsystems on
the target), place a C166 Resource Configuration object at the top level
of each subsystem. You should not have more than one C166 Resource
Configuration object in the same branch of the model hierarchy. Errors
will result if these conditions are not met.

When the C166 Resource Configuration block is placed into a model,
it modifies the preloadfcn callback of the model. If you wish to add
a command to the preloadfcn callback of a model that already has
an C166 Resource Configuration block, do not remove the commands
that are already installed. Instead, copy the installed preloadfcn
callback and append your commands. Then set the preloadfcn
to the merged command. If you corrupt the preloadfcn, you can
retrieve the command from any model that has a C166 Resource
Configuration block, as the preloadfcn will be the same for all models.
You can retrieve the preloadfcn with the following command: plf =
get_param(bdroot,'preloadfcn')

Types of Configurations

A configuration is a collection of parameter values affecting the
operation of one or more device driver blocks in the Embedded Target
for Infineon C166 Microcontrollers library. The C166 Resource
Configuration object currently supports the following types of
configurations:

7-9

C166 Resource Configuration

• C166 Drivers Configuration: C166 microcontroller clocks and other
CPU-related parameters

• Asynchronous/Synchronous Serial Interface Configuration:
parameters related to the serial driver blocks and Simulink external
mode

• CAN Configuration Parameters: parameters for CAN interrupt levels

Dialog
Box

The C166 drivers configuration always appears in the active
configuration pane. If there are also blocks in your model from the
Asynchronous/Synchronous Serial Interface (ASC0) sublibrary, you
will also see the configuration for these, as seen in the next example.
If you add an ASC0 block to a model without any ASC0 blocks, the
appropriate configuration is created and activated in the C166 Resource
Configuration block. Similarly, if you add CAN blocks to a model, a
CAN configuration is created.

You can see an example like this by opening the demo model
c166_serial_transmit and double-clicking on the C166 Resource
Configuration block.

A configuration remains active until all blocks associated with it are
removed from the model or subsystem. At that point, the configuration
is in an inactive state. Inactive configurations are lost from the C166
Resource Configuration window when the model is saved and reopened.
You can reactivate a configuration by simply adding an appropriate
block into the model.

Using the C166 Resource Configuration Window

To open the C166 Resource Configuration window, install a C166
Resource Configuration object in your model or subsystem and
double-click on the C166 Resource Configuration icon. The C166
Resource Configuration window then opens.

This example shows the C166 Resource Configuration window for a
model that has active configurations for the C166 microcontroller
(c166drivers) and for the Asynchronous/Synchronous Serial Interface
(ASC0) blocks, as found in the demo c166_serial_transmit.

7-10

C166 Resource Configuration

The C166 Resource Configuration window consists of the following
elements:

• Active Configurations panel: This panel displays a list of currently
active configurations. To edit a configuration, click its entry in the
list. The parameters for the selected configuration then appear in the
System Configuration panel.

To link back to the library associated with an active configuration,
right-click its entry in the list. From the menu that appears, select
Go to library.

To see documentation associated with an active configuration,
right-click its entry in the list. From the menu that appears, select
Help.

• System Configuration panel: This panel lets you edit the
parameters of the selected configuration. The parameters of each
configuration type are detailed in “C166 Resource Configuration
Window Parameters” on page 7-12.

7-11

C166 Resource Configuration

Note Click Apply to make your changes take effect.

• Status panel: The Status panel displays error messages that may
arise if resource allocation conflicts are detected in the configuration.

• OK button: Dismisses the window.

C166
Resource
Configuration
Window
Parameters

The following sections describe the parameters for each type of
configuration in the C166 Resource Configuration window. The default
parameter settings are optimal for most purposes. If you want to change
the settings, read the relevant sections of the C166 User’s Manual. You
can find this document at the Infineon Web site at the following URL:

http://www.infineon.com/

C166 System Configuration Parameters

External_oscillator_frequency
Depending on your hardware variant, the Real-Time Clock (RTC)
may be driven directly by the external oscillator input and it is,

7-12

http://www.infineon.com/

C166 Resource Configuration

therefore, important that the external oscillator frequency is set
correctly. Otherwise, if the RTC is used to provide any timing
services, the behavior will be incorrect. The default value for
external oscillator frequency is 5 MHz. You should check your
hardware manual to establish the correct value for your setup.
Note you can choose the RTC as a System_timer, see below.

Free_running_timer
This parameter allows one of the on-chip timers to be configured
for use with execution profiling. The selected timer is configured
to run indefinitely at a known frequency and is used by the
execution profiling engine to record the times at which tasks
start or finish executing. See Chapter 5, “Execution Profiling” for
more details.

System_frequency
You must set the system frequency of your C166 microcontroller
hardware here. Note that the value depends on your hardware
type and configuration. If you choose an incorrect value the model
will be correspondingly fast or slow.

System_timer
You must select which timer to use for generating interrupts to
drive the model update rate. You should select a timer, or timer
pair, that you do not intend to use for any other purpose within
your application. We recommend you choose a pair of timers, e.g.,
T6, with reload from CAPREL. This will give the best possible
sample time accuracy with no long term drift caused by higher
priority interrupts. If you choose a single timer, e.g., T2 or RTC,
the timer value will be reloaded within the timer interrupt service
routine. With this approach, any delay in servicing the timer
interrupt will be added to the time until the next timer interrupt
is generated.

Timer_interrupt_level and Timer_interrupt_level_group
These two parameters together set the priority of sample time
interrupts. You should choose values such that the sample time
interrupts are suitably prioritized relative to other interrupts
used by your application.

7-13

C166 Resource Configuration

Asynchronous/Synchronous Serial Interface Configuration
Parameters

Bit_rate_achieved
This read-only field shows the achieved serial interface bit rate. In
general, this value differs slightly from the requested bit rate, but
is the closest value that can be achieved by setting allowed values
in C166 register S0BG and bitfield S0BRS of register S0CON.

Bit_rate_ideal
Enter the desired bit rate for serial communications in this field.
Appropriate register settings are calculated automatically. You
can verify the actual bit rate in the Bit_rate_achieved field.

7-14

C166 Resource Configuration

Loopback_mode_enable
Select this entry to operate the serial interface in loopback mode.
This may be useful for test purposes where the serial interface is
required to receive data that it transmitted itself.

Mode_control
Select the desired combination of word length and parity/no
parity. See the C166 User’s Manual for more details.

Parity_selection
If parity is enabled, you must select odd or even.

Receive_buffer_size
You must select the size of the RAM buffer that will be used by
the serial receive driver. The maximum allowed value is 254.

Receive_interrupt_level and Receive_interrupt_level_group
Set the receive interrupt priority here. Note that the drivers used
by Embedded Target for Infineon C166 Microcontrollers allow
only interrupt levels 14 and 15 to be used. The reason for this is
that the drivers use the peripheral event controller (PEC), which
provides very fast interrupt response but is restricted to levels
14 and 15.

S0CON
This is a noneditable field that shows the value of the serial
interface register S0CON and how it varies as dialog settings
are changed.

Stop_bits
You must select either 1 or 2 stop bits.

Transmit_buffer_size
See Receive_buffer_size.

Transmit_interrupt_level and Transmit_interrupt_level_group
See Receive parameters above.

7-15

C166 Resource Configuration

CAN Configuration Parameters

The parameters listed below are the same for CAN modules A and B.

C166_Transmit_Buffer_Number
This parameter is read only; all transmitted messages are sent
from buffer 14.

CAN_Int_Level_Group and CAN_Interrupt_Level
These two parameters together set the priority of sample time
interrupts. You should choose values such that the sample time
interrupts are suitably prioritized relative to other interrupts

7-16

C166 Resource Configuration

used by your application. Note that CAN module interrupts
must be set to a higher priority than timer interrupts. Use the
Validate Configuration button to make sure you do not select
an interrupt level that is already in use.

Masks You can use these mask configuration parameters to choose to ignore
certain bits. In general, a CAN message is received only if its identifier
is an exact match with the identifier specified in one of the receive
buffers. You can use mask parameters to indicate that some of the bits
in the received message identifier are “don’t care.”

Buffer_15_Mask
This mask applies to buffer 15 only. Each bit in the mask that is
set to zero causes the corresponding bit in the received message
identifier to be ignored when comparing it to the message
identifier that buffer 15 is configured to receive.

Global_Mask_Extended
This mask applies to any of buffers 1 to 14 that are configured
to receive messages with an extended identifier. Each bit in
the mask that is set to zero causes the corresponding bit in the
received message identifier to be ignored when comparing it to the
message identifier that this buffer is configured to receive.

Global_Mask_Standard
This mask applies to any of buffers 1 to 14 that are configured
to receive messages with an standard identifier. Each bit in
the mask that is set to zero causes the corresponding bit in the
received message identifier to be ignored when comparing it to the
message identifier that this buffer is configured to receive.

Module_Enabled
If the module is enabled, then initialization code for that CAN
module is generated. Use this setting to prevent generation of
driver code for a CAN module that is not required, or not available
on your hardware variant.

7-17

C166 Resource Configuration

Timing CAN_Bit_Rate
Enter the desired bit rate. The default bit rate is 500000.

Number_Of_Quanta
The number of CAN module clock ticks per message bit.

Resynchronization_Jump_Width
The maximum number of clock ticks that the CAN device can
resynchronize over when it detects that it is losing message
synchronization.

Sample_Point
The point in the message where the CAN module samples the
value of the message bit.

Transmit_Queue_Length
Length (number of messages) of the transmit queue. The transmit
queue holds messages that are waiting to be transmitted. An
increase in performance can be achieved by reducing the queue
length. However, if the queue’s length is too small, it may become
full, causing messages to be lost.

7-18

CAN Bus Status

Purpose Output Bus Off or Error Warning state of CAN module

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ CAN Interface

Description The CAN Bus Status block provides an indicator of the state of the
selected CAN module. The block has a single output that may be set to
indicate either the Bus Off or Error Warning state of the module.

Dialog
Box

Module
Select CAN module A or B.

Status type
Choose Bus Off or Error Warning.

7-19

CAN Bus Status

Sample time
The sample time of this block.

7-20

CAN Calibration Protocol (C166)

Purpose Implement CAN Calibration Protocol (CCP) standard

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ CAN Interface

Description The CAN Calibration Protocol (C166) block provides an implementation
of a subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a
protocol for communicating between the target processor and the host
machine over CAN. In particular, a calibration tool (see “Compatibility
with Calibration Packages” on page 7-26) running on the host can
communicate with the target, allowing remote signal monitoring and
parameter tuning.

This block processes a Command Receive Object (CRO) and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition
(DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD 1a on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

Using the DAQ Output

The DAQ output is the output for any CCP Data Acquisition (DAQ) lists
that have been set up. You can use the ASAP2 file generation feature of
the Real-Time (RT) target to

• Set up signals to be transmitted using CCP DAQ lists.

• Assign signals in your model to a CCP event channel automatically
(see “Generating ASAP2 Files” on page 2-17).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the appropriate CCP/DAQ data appear on
the DAQ output, along with an associated function call trigger.

The calibration tool (see “Compatibility with Calibration Packages” on
page 7-26) must use CCP commands to assign an event channel and
data to the available DAQ lists, and interpret the synchronous response.

7-21

http://www.asam.de

CAN Calibration Protocol (C166)

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

• There is no need for the host to poll for the data. Network traffic is
halved.

• The data is transmitted at the correct update rate for the signal.
Therefore, there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes
place after the signals have been updated, so there is no risk of
interruptions while sampling the signal.

Note The Embedded Target for Infineon C166 Microcontrollers does
not currently support event channel prescalers.

7-22

CAN Calibration Protocol (C166)

Dialog
Box

CAN station address (16 bit integer)
The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

7-23

CAN Calibration Protocol (C166)

CAN module
Choose CAN module A or B.

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive
Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

Total number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you wish to log simultaneously. You must make sure
you allocate at least 1 ODT per DAQ list, or your build will fail.
The calibration tool will give an error message if there are too few
ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.
If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target, the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

7-24

CAN Calibration Protocol (C166)

As an example, if you have five different rates in a model, and you
are using three rates for DAQ, then this will create three DAQ
lists and you must make sure you have at least three ODTs. ODTs
are shared equally among DAQ lists and, therefore, you will end
up with one ODT per DAQ list. With less than three ODTs, you
get zero ODTs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with
one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands

The following CCP commands are supported by the CAN Calibration
Protocol (C166) block:

• CONNECT

• DISCONNECT

• DNLOAD

• DNLOAD_6

• EXCHANGE_ID

• GET_CCP_VERSION

• GET_DAQ_SIZE

• GET_S_STATUS

• SET_DAQ_PTR

• SET_MTA

• SET_S_STATUS

7-25

CAN Calibration Protocol (C166)

• SHORT_UP

• START_STOP

• START_STOP_ALL

• TEST

• UPLOAD

• WRITE_DAQ

Compatibility with Calibration Packages

The above commands support

• Synchronous signal monitoring via calibration packages that use
DAQ lists

• Asynchronous signal monitoring via calibration packages that poll
the target

• Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ
list and polling mode, and with the Accurate Technologies, Inc., Vision,
calibration package running in DAQ list mode. (Note that Accurate
Technologies, Inc., Vision does not support the polling mechanism for
signal monitoring).

7-26

CAN Calibration Protocol (C166, TwinCAN)

Purpose Implement CAN Calibration Protocol (CCP) standard for XC16x
variants of Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ CAN Interface

Description The CAN Calibration Protocol (C166, TwinCAN) block is for the
TwinCAN interface and performs the same functions as the CAN
Calibration Protocol (C166) block. For block parameter descriptions, see
the CAN Calibration Protocol (C166) reference page.

7-27

CAN Receive

Purpose Receive CAN messages from CAN module on Infineon C166
microprocessor

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ CAN Interface

Description The CAN Receive block receives CAN messages from a CAN module.
The CAN Receive block can reserve one of the buffers on the CAN
module. Alternatively, you can instruct the CAN Receive block to
select a hardware buffer automatically from the available buffers. The
CAN Receive block has two outputs: a data output and a function-call
trigger output. The CAN Receive block polls its message buffer at a rate
determined by the block’s sample time. When the CAN Receive block
detects that a message has arrived, the function-call trigger is activated.
You should use a function-call subsystem, activated by the trigger, to
decode the message available at the CAN Receive block data output.

Dialog
Box

7-28

CAN Receive

CAN module
Select CAN module A or B. The CAN modules can receive
messages independently.

CAN message identifier
The identifier of the message you want to receive. Note that if you
have set the CAN configuration parameters in your model to mask
out certain bits (e.g., the message identifier field), you may receive
messages with identifiers other than the identifier specified here.
See “CAN Configuration Parameters” on page 7-16.

Buffer selection
Choose Automatic or Manual. When the automatic option is
selected, the CAN Receive block automatically selects a receive
buffer from the available buffers. Use this automatic buffer
selection, unless you want to use buffer 15 with its individually
programmable mask.

Buffer number [1..15]
This field is enabled if the Buffer selection is Manual. The buffer
number specifies the identifier of the receive buffer for this block.
Select Automatic buffer selection instead of manually specifying
the buffer, unless you want to use buffer 15 with its individually
programmable mask.

CAN message type
The type of message you want to receive. Select either
Standard(11-bit identifier) or Extended(29-bit
identifier).

Sample time
Determines the rate at which to sample the buffer to see if a new
message has arrived.

7-29

CAN Receive

Note The CAN Receive block sample time must be set to a value
that is smaller than the minimum time between CAN messages
that will be received into the corresponding buffer. If more than
one message is received into a buffer during a single sample
interval, the older message will be overwritten.

7-30

CAN Reset

Purpose Reset CAN module

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/CAN Interface

Description The CAN Reset block reinitializes the CAN module. We recommend
that you place this block in a triggered subsystem, with a sample time
of -1 (inherited).

Dialog
Box

Module
Select CAN module A or B.

Sample time
The sample time of this block.

7-31

CAN Transmit

Purpose Transmit CAN messages via CAN module on Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/C166 Driver
Library/CAN Interface

Description The CAN Transmit block transmits a CAN message onto the CAN bus.
Three modes of transmission are available with the CAN Transmit
block.

The default mode is to use a priority-based message queue shared by
all transmit blocks operating in this mode; the priority-based message
queue operates with CAN buffer 14; when a message is successfully
transmitted from this buffer, an interrupt is generated and the highest
priority message from the queue is loaded into the hardware buffer
ready to be transmitted. This mode has the advantage of allowing
several messages with different identifiers to be transmitted without
each message requiring a dedicated hardware buffer. Note that
although messages are taken from the queue in order of priority, it is
possible for a low priority message to be present in the hardware buffer
and higher priority messages cannot then be transferred from the queue
until transmission of the low priority message is complete.

The second transmit mode is to use a dedicated CAN buffer; in this
case, messages to be transmitted are loaded directly into a CAN
buffer that is used exclusively by the block. No queue is used, which
means that in case the previous message has not been transmitted,
it will be overwritten by the new one. This transmit mode does not
use interrupts. An advantage of using the dedicated buffer mode is
that there is reduced delay in transmitting high-priority messages,
and reduced processor overhead that is otherwise required for queue
management and servicing interrupts.

The third transmit mode is to use a First In First Out (FIFO) queue
with dedicated buffer. In this mode, messages are placed in a queue
and then transmitted on a first in, first out basis. This mode is useful
if several messages, possibly with the same CAN identifier, must be
transmitted in sequence; this may be a requirement if CAN is being
used for data acquisition.

7-32

CAN Transmit

The CAN Transmit block should be connected to CAN Message
Packing/Unpacking blocks. Do not ground the block or leave it
unconnected.

Dialog
Box

Module
Select CAN module A or B.. The CAN modules can receive
messages independently.

Transmit mode
Select one of the three modes described above: queued
transmission with shared buffer, direct transmission with
dedicated buffer, or FIFO queue with dedicated buffer.

Buffer selection
Only for selecting dedicated buffers — available only if you select
direct transmission or FIFO queue transmit modes. Choose either
automatic or manual selection of the hardware buffer number.

Buffer number
This option is available only if the buffer selection is available and
set to manual. You must select a buffer number between 1 and
14. Note if more than one message is ready to be transmitted,

7-33

CAN Transmit

then the one in the lower buffer number will be sent first. Select
buffer numbers such that the higher the message priority, the
lower the buffer number.

Sample time
Choose -1 to inherit the sample time from the driving blocks. The
CAN Transmit block does not inherit constant sample times and
runs at the base rate of the model if driven by invariant signals.

7-34

Digital In

Purpose Digital input driver that reads value of specified port or pin number

Library Embedded Target for Infineon C166 Microcontrollers/C166 Driver
Library/Digital Input/Output

Description

The Digital In block reads the logical state of the specified pin and
outputs a value of zero or one accordingly.

Dialog
Box

7-35

Digital In

Port
Select a port. Options are P0L, POH, P1L, P1H, P2–P8.

Pin
The pin must be an integer value in the range 0 to 7 for ports that
are 8 bits wide, or 0 to 15 for ports that are 16 bits wide.

Sample time
The time interval between samples. The default is 0.1. See
“Specifying Sample Time” in the Simulink documentation for
more information.

7-36

Digital Out

Purpose Digital output driver that sets logical state of specified pin

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Digital Input/Output

Description The Digital Out block sets the logical state of the specified pin according
to the input signal. When the input signal is greater than zero, a logical
one is written to the selected pin; otherwise a logical zero is written.

Dialog
Box

Port
Select a port. Options are P0L, POH, P1L, P1H, P2–P8 (not P5).

7-37

Digital Out

Pin
The pin must be an integer value in the range 0 to 7 for ports that
are 8 bits wide, or 0 to 15 for ports that are 16 bits wide.

Sample time
The time interval between samples. The default is -1, inherited.
See “Specifying Sample Time” in the Simulink documentation for
more information.

7-38

Fast External Interrupt

Purpose Generate asynchronous function-call trigger when interrupt occurs

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Interrupts

Description

The Fast External Interrupt block executes a function-call triggered
subsystem in the context of the service routine for a fast external
interrupt. To generate the interrupt, you must select one of the upper
eight pins of Port 2 (P2.8 to P2.15)

The function-call subsystem will be executed as an asynchronous
task. Use this block to assign the task a Simulink priority and a CPU
interrupt level. The settings that you assign must be consistent with
priorities and interrupt levels of other tasks defined in the model.

Limitations on XC16x Hardware

On XC16x hardware, this block is unable to generate code to enable
fast external interrupts. Fast external interrupts must be enabled by
setting bits in the register EXICON. On XC16x devices this register is
write protected after execution of the special EINIT instruction by the
processor’s register security mechanism. It is not possible for the driver
block to generate code that is executed before the EINIT instruction.

If you want to use this block on XC16x hardware, you must set the
required bits in register EXICON in the Project Options within the
Tasking EDE. For example, to enable fast external interrupts on rising
or falling edges for both of pins P2.8 and P2.9 (as required by the demo
model c166_async), follow these steps:

1 Build the model c166_async.

7-39

Fast External Interrupt

2 Open the project c166_async_c166 within the Tasking EDE.

3 Select Project > Project Options.

4 In the Project Options dialog, select in the tree
Application > Startup > EXICON.

a Set the value to 0x000F.

b Select the check box to Include in startup code.

5 From within the Tasking EDE, re-build the project c166_async_c166.

6 Download to the XC16x by launching Crossview from the CrossView
button in the Tasking EDE.

Alternatively, you can create a new template project with the required
setting for EXICON. You can easily create a new template project from
the MATLAB Start menu by selecting Start > Simulink > Link for
TASKING > Create New Template Projects.

Dialog
Box

Port 2 pin number
Select a port. Options are 8 to 15.

Trigger mode
Select from Rising or falling edge (the default), Rising edge,
Falling edge, or Disabled.

Priority
Set a Simulink priority. The default is 30.

Interrupt level
Select an interrupt level from 1 to 15. The default is 5.

Interrupt level group
Select an interrupt level group from 0 to 3. The default is 1.

Show simulation input
Select this check box (and click Apply) to get an input port for
simulation.

7-40

Serial Receive

Purpose Configure C166 microcontroller for serial receive

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Asynchronous/Synchronous Serial Interface

Description The Serial Receive block receives bytes over the C166 microcontroller
Synchronous/Asynchronous Serial Interface ASC0. It requests either a
fixed number of bytes to be received, or by enabling the first input, a
variable number of bytes can be requested each time this block is called.

When the block is called, the requested number of bytes are retrieved
from a FIFO buffer that is internal to the device driver. If this buffer
contains fewer bytes than the number requested, these bytes are pulled
from the buffer and made available at the block output. The number of
bytes actually retrieved from the buffer is made available at the second
output. This block retrieves only those bytes that have already been
received and placed in the internal buffer; it never waits for additional
data to be received.

Whenever bytes are received at the serial interface, a Peripheral Event
Controller (PEC) interrupt is generated to move the byte into the
internal buffer. If there is no more space available in the internal buffer,
any additional data is lost. The PEC interrupts are extremely fast and
have minimal effect on the rest of the application.

To configure the serial interface bit rate, buffer size, PEC interrupt
priority, and other parameters, see “Asynchronous/Synchronous Serial
Interface Configuration Parameters” on page 7-14.

7-41

Serial Receive

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface.
Attempting to use the debugger in this case causes an error. If you
need to debug an application that includes the serial transmit and
receive blocks, you must run the debugger using a hardware simulator;
alternatively, it may be possible to run your debugger on-chip without
using the serial interface, for example, if debugging over CAN is
available. See “Starting the Debugger on Completion of the Build
Process” on page 2-12.

Block Inputs and Outputs

The input can be enabled so a variable number of bytes can be requested
each time.

The first output pulls bytes from the buffer — either the number
requested or the number available, whichever is the lower. Note that
the number requested is the value of input signal if supplied, or the
width of output signal otherwise.

The second output is the number of bytes actually retrieved from the
buffer.

7-42

Serial Receive

Dialog
Box

Show number of bytes read
Enables second output to show actual number of bytes retrieved
from the buffer.

Show length input
Enables inport so you can vary the number of bytes requested
per call.

Maximum length of data
Set this as required up to the maximum buffer size. You can
set receive and transmit buffer size (up to a maximum of 256
bytes) within the C166 Resource Configuration object. See
“Asynchronous/Synchronous Serial Interface Configuration
Parameters” on page 7-14.

Sample time
The time interval between samples. The default is 1. To inherit
the sample time, set this parameter to -1. See “Specifying Sample
Time” in the Simulink documentation for more information.

7-43

Serial Transmit

Purpose Configure C166 microcontroller for serial transmit

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Asynchronous/Synchronous Serial Interface

Description The Serial Transmit block transmits bytes over the C166 microcontroller
Synchronous/Asynchronous Serial Interface ASC0. You can use it either
to transmit a fixed number of bytes, or by enabling the second input,
transmit a variable number of bytes each time this block is called.

When the block is called, the specified number of bytes are placed in a
FIFO buffer that is internal to the device driver. If this buffer is already
full, or if the number of spaces available is too few, then not all of the
bytes requested will actually be queued for transmit; in this case, the
number of bytes actually transmitted can be determined from block
output.

Once bytes are queued for transmit, they will be sent as fast as possible
by the serial interface hardware with no further intervention required
by the main application. Note that after each byte is sent, a Peripheral
Event Controller (PEC) interrupt is generated to fetch the next byte
from the internal buffer. The PEC interrupts are extremely fast and
have minimal effect on the rest of the application.

To configure the serial interface bit rate, buffer size, PEC interrupt
priority, and other parameters, see “Asynchronous/Synchronous Serial
Interface Configuration Parameters” on page 7-14.

7-44

Serial Transmit

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface.
Attempting to use the debugger in this case causes an error. If you
need to debug an application that includes the serial transmit and
receive blocks, you must run the debugger using a hardware simulator;
alternatively, it may be possible to run your debugger on-chip without
using the serial interface, for example if debugging over CAN is
available. See “Starting the Debugger on Completion of the Build
Process” on page 2-12.

Block Inputs and Outputs

The first input contains the data to be transmitted; this input signal
may be either a vector or scalar with data type uint8.

The optional second input must be a scalar and may be used to control
the number of bytes transmitted. The number of bytes to transmit
should not be greater than the width of the first input signal.

The block output port actual number of bytes output gives the
number of bytes queued for transmit. If there was sufficient space in
the buffer, this number will be equal to the requested number of bytes
to transmit.

7-45

Serial Transmit

Dialog
Box

Sample time
The time interval between samples. To inherit the sample time,
leave this parameter at the default -1. See “Specifying Sample
Time” in the Simulink documentation for more information.

Show length input
Enable/disable the number of bytes to send. If not selected,
the number of bytes sent is just the width of the first inport; if
selected, the second input is enabled, which controls the number
of bytes to send.

Show number of bytes sent
Enable/disable the number of bytes actually sent. If selected, this
value is available from the first output.

7-46

Switch Target Configuration

Purpose Configure model and Target Preferences to one of a set of predefined
hardware configurations

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ Utilities

Description

Place the Switch Target Configuration block in your model and
double-click it to run a convenience function that configures your model
and Target Preferences to one of a set of predefined configurations. The
Link for TASKING Option Set Selection dialog box appears, and you
must choose a configuration for your processor type from the list. The
suffixes ’_hw’ and ’_sim’ mean hardware or instruction set simulator.

7-47

Switch Target Configuration

The predefined configurations include settings for

7-48

Switch Target Configuration

• Phytec phyCORE-167 ST10F269

• Phytec phyCORE-167 C167CS

• Phytec kitCON-167 C167CR

• Infineon XC167CI Starter Kit

7-49

TwinCAN Bus Status

Purpose Output Bus Off or Error Warning state of a CAN node on XC16x
variants of Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ TwinCAN Interface

Description The TwinCAN Bus Status block is for the TwinCAN interface and
performs the same functions as the CAN Bus Status block. For block
parameter descriptions, see the CAN Bus Status reference page.

7-50

TwinCAN Receive

Purpose Receive CAN messages via TwinCAN module on XC16x variants of
Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/ C166 Driver
Library/ TwinCAN Interface

Description The TwinCAN Receive block receives CAN messages from a TwinCAN
module. The TwinCAN Receive automatically reserves one of the
buffers on the TwinCAN module. The TwinCAN Receive block has
two outputs: a data output and a function call trigger output. The
TwinCAN Receive block polls its message buffer at a rate determined
by the block’s sample time. When the TwinCAN Receive block detects
that a message has arrived, the function call trigger is activated. You
should use a function call subsystem, activated by the trigger, to decode
the message available at the TwinCAN Receive block data output.

This block has the same parameters as the CAN Receive block, except
there is no option to Automatically select buffer or Buffer number.
For block parameter descriptions, see the CAN Receive reference page.

7-51

TwinCAN Reset

Purpose Reset CAN node on XC16x variants of Infineon C166

Library Embedded Target for Infineon C166 Microcontrollers/C166 Driver
Library/TwinCAN Interface

Description The TwinCAN Reset block is for the TwinCAN interface and performs
the same functions as the CAN Reset block. For block parameter
descriptions, see the CAN Reset reference page.

7-52

TwinCAN Transmit

Purpose Transmit CAN messages from TwinCAN module on XC16x variants of
Infineon C166

Library Embedded Target for Infineon C166® Microcontrollers/ C166 Driver
Library/ TwinCAN Interface

Description The TwinCAN Transmit block transmits a CAN message onto the CAN
bus. Two modes of transmission are available with the CAN Transmit
block, as described below.

The first transmit mode is to use a dedicated CAN buffer; in this case,
messages to be transmitted are loaded directly into a CAN buffer
that is used exclusively by the block. No queue is used, which means
that in case the previous message has not been transmitted, it will
be overwritten by the new one. This transmit mode does not use
interrupts. An advantage of using the dedicated buffer mode is that
there is minimal delay in transmitting high-priority messages.

The second transmit mode is to use a First In First Out (FIFO) queue
with dedicated buffer. In this mode, messages are placed in a queue
and then transmitted on a first in, first out basis. This mode is useful
if several messages, possibly with the same CAN identifier, must be
transmitted in sequence; this may be a requirement if CAN is being
used for data acquisition.

The TwinCAN Transmit block should be connected to CAN Message
Packing/Unpacking blocks. Do not ground the block or leave it
unconnected.

7-53

TwinCAN Transmit

Dialog
Box

TwinCAN Node
Select node A or node B.

Transmit mode
Select one of the modes described above: direct transmission with
dedicated buffer, or FIFO queue with dedicated buffer.

Buffer selection
Choose either automatic or manual selection of the hardware
buffer number.

Buffer number [0..31]
This option is available only if the buffer selection is available and
set to manual. You must select a buffer number between 0 and 31.
Note if more than one message is ready to be transmitted, then
the one in the lower buffer number will be sent first. Select buffer
numbers such that the higher the message priority, the lower

7-54

TwinCAN Transmit

the buffer number. Note that the hardware buffers are shared
between node A and node B of the TwinCAN module.

Sample time
Choose -1 to inherit the sample time from the driving blocks.
The TwinCAN Transmit block does not inherit constant sample
times and runs at the base rate of the model if driven by invariant
signals.

7-55

Index

IndexA
ASAP2 files

generating for C166 2-14
ASAP2 files, generating 2-17

B
bit-addressable memory 4-1
blocks

C166 Execution Profiling via ASC0 7-2
C166 Execution Profiling via CAN A 7-4
C166 Execution Profiling via TwinCAN

A 7-7
C166 Resource Configuration 7-8
CAN Bus Status 7-19
CAN Calibration Protocol (C166) 7-21
CAN Calibration Protocol (C166,

TwinCAN) 7-27
CAN Receive 7-28
CAN Reset 7-31
CAN Transmit 7-32
Digital In 7-35
Digital Out 7-37
Fast External Interrupt 7-39
Serial Receive 7-41
Serial Transmit 7-44
Switch Target Configuration 7-47
TwinCAN Bus Status 7-50
TwinCAN Receive 7-51
TwinCAN Reset 7-52
TwinCAN Transmit 7-53

C
C166 Execution Profiling via ASC0 block 7-2
C166 Execution Profiling via CAN A block 7-4
C166 Execution Profiling via TwinCAN A

block 7-7
C166 Resource Configuration block 7-8
C166 Target 1-1

CAN Bus Status block 7-19
CAN Calibration Protocol (C166) block 7-21
CAN Calibration Protocol (C166, TwinCAN)

block 7-27
CAN Receive block 7-28
CAN Reset block 7-31
CAN Transmit block 7-32
Configuration Class blocks 1-24
custom storage class 4-1

D
device driver blocks

C166 Digital In 7-35
C166 Digital Out 7-37
C166 Execution Profiling via ASC0 7-2
C166 Execution Profiling via CAN A 7-4
C166 Execution Profiling via TwinCAN

A 7-7
C166 Resource Configuration 7-8
C166 Serial Receive 7-41
C166 Serial Transmit 7-44
CAN Bus Status 7-19
CAN Calibration Protocol (C166) 7-21
CAN Calibration Protocol (C166,

TwinCAN) 7-27
CAN Receive 7-28
CAN Reset 7-31
CAN Transmit 7-32
Digital In 7-35
Digital Out 7-37
Fast External Interrupt 7-39
Serial Receive 7-41
Serial Transmit 7-44
Switch Target Configuration 7-47
TwinCAN Bus Status 7-50
TwinCAN Receive 7-51
TwinCAN Reset 7-52
TwinCAN Transmit 7-53

Digital In block 7-35

Index-1

Index

Digital Out block 7-37
downloading code 2-7

E
Embedded Target for Infineon C166

Microcontrollers
feature summary 1-3

example model
c166_bitfields 4-1
c166_fuelsys 2-14
c166_multitasking 5-1
c166_serial_io 2-9
c166_serial_transmit 2-4
c166_user_io 3-1

execution profiling 5-1

F
Fast External Interrupt block 7-39
fixed-point example 2-14

G
generating code 2-7

I
installation of Embedded Target for Infineon

C166 Microcontrollers 1-7
integrating hand-coded device drivers 3-1

M
multitasking 5-1

R
real-time target

C166 tutorial 2-2

S
Serial Receive block 7-41
Serial Transmit block 7-44
Switch Target Configuration block 7-47

T
TwinCAN Bus Status block 7-50
TwinCAN Receive block 7-51
TwinCAN Reset block 7-52
TwinCAN Transmit block 7-53

Index-2

	toc
	Getting Started
	What Is the Embedded Target for Infineon C166 Microcontrollers?
	Feature Summary

	Prerequisites
	Using This Guide
	Installing the Embedded Target for Infineon C166 Microcontrolle
	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Software Requirements
	Required and Related MathWorks Products
	Supported Cross-Development Tools

	Switching Between Hardware Variants

	Setting Up and Verifying Your Installation
	Verifying MiniMon Settings

	Setting Up Your Target Hardware
	Jumper Settings for the phyCore-167 Development Board

	Setting Target Preferences
	Code Generation Configuration for Nondefault Processors
	Supported Blocks and Data Types
	Overview of C166 Configuration Parameters

	Tutorial: Simple Example Applications for C166 Microcontrollers
	Introduction
	Tutorial: Creating a New Application
	Before You Begin
	Example Model 1: c166_serial_transmit
	Generating and Downloading Code
	Verifying Code Execution on the Target

	Example 2: c166_serial_io
	Verifying Code Execution on the Target

	Starting the Debugger on Completion of the Build Process
	Fixed-Point Example Model: c166_fuelsys

	Generating ASAP2 Files

	Integrating Your Own Device Drivers
	Integrating Hand-Coded Device Drivers with a Simulink Model
	Preparing Input and Output Signals to the Device Driver Function
	Calling the Device Driver Functions from c166_main.c
	Adding the I/O Driver Source to the List of Files to Build
	Tutorial: Using the Example Driver Functions

	Custom Storage Class for C166 Microcontroller Bit-Addressable Me
	Specifying C166 Microcontroller Bit-Addressable Memory
	Using the Bitfield Example Model

	Execution Profiling
	Overview of Execution Profiling
	The Profiling Command
	Definitions
	Execution Profiling Blocks

	Real-Time Workshop Options for Execution Profiling
	Execution Profiling
	Number of Data Points
	Task Scheduler Overrun Options

	Multitasking Demo Model
	Running the Multitasking Demo
	Interpreting the MATLAB Graphic
	The Generated HTML Report

	Blocks — By Category
	C166 Drivers
	Top-Level Blocks
	Asynchronous/Synchronous Serial Interface
	CAN Interface
	Execution Profiling
	TwinCAN Interface
	Interrupts
	Utilities
	Digital Input/Output

	CAN Message Blocks and CAN Drivers

	Blocks — Alphabetical List
	Index

